
Timothy J Booth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7077973/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Chemical Vapor-Deposited Graphene on Ultraflat Copper Foils for van der Waals Hetero-Assembly. ACS Omega, 2022, 7, 22626-22632.	1.6	5
2	Super-Resolution Nanolithography of Two-Dimensional Materials by Anisotropic Etching. ACS Applied Materials & Interfaces, 2021, 13, 41886-41894.	4.0	16
3	Long-term stability and tree-ring oxidation of WSe ₂ using phase-contrast AFM. Nanoscale, 2021, 13, 19238-19246.	2.8	3
4	Catalytically mediated epitaxy of 3D semiconductors on van der Waals substrates. Applied Physics Reviews, 2020, 7, .	5.5	15
5	Selective area oxidation of copper derived from chemical vapor deposited graphene microstructure. Nanotechnology, 2020, 31, 485603.	1.3	5
6	A universal approach for the synthesis of two-dimensional binary compounds. Nature Communications, 2019, 10, 2957.	5.8	93
7	Atomic Layer Deposition Aluminaâ€Mediated Graphene Transfer for Reduced Process Contamination. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900424.	1.2	4
8	Do-It-Yourself Transfer of Large-Area Graphene Using an Office Laminator and Water. Chemistry of Materials, 2019, 31, 2328-2336.	3.2	71
9	Oxidation of Suspended Graphene: Etch Dynamics and Stability Beyond 1000 °C. ACS Nano, 2019, 13, 2281-2288.	7.3	10
10	Graphene–Si CMOS oscillators. Nanoscale, 2019, 11, 3619-3625.	2.8	6
11	Lithographic band structure engineering of graphene. Nature Nanotechnology, 2019, 14, 340-346.	15.6	82
12	Graphene-Subgrain-Defined Oxidation of Copper. ACS Applied Materials & Interfaces, 2019, 11, 48518-48524.	4.0	13
13	Probing the nanoscale origin of strain and doping in graphene-hBN heterostructures. 2D Materials, 2019, 6, 015022.	2.0	17
14	Quantitative optical mapping of two-dimensional materials. Scientific Reports, 2018, 8, 6381.	1.6	29
15	Conductance quantization suppression in the quantum Hall regime. Nature Communications, 2018, 9, 659.	5.8	25
16	High-quality graphene flakes exfoliated on a flat hydrophobic polymer. Applied Physics Letters, 2018, 112, .	1.5	8
17	Colorimetric sensing of dopamine using hexagonal silver nanoparticles decorated by task-specific pyridinum based ionic liquid. Sensors and Actuators B: Chemical, 2018, 271, 64-72.	4.0	42
18	Conductivity mapping of graphene on polymeric films by terahertz time-domain spectroscopy. Optics Express, 2018, 26, 17748.	1.7	29

Тімотну Ј Воотн

#	Article	IF	CITATIONS
19	A Graphene-Edge Ferroelectric Molecular Switch. Nano Letters, 2018, 18, 4675-4683.	4.5	21
20	Raman spectral indicators of catalyst decoupling for transfer of CVD grown 2D materials. Carbon, 2017, 117, 75-81.	5.4	33
21	Sputtering an exterior metal coating on copper enclosure for large-scale growth of single-crystalline graphene. 2D Materials, 2017, 4, 045017.	2.0	17
22	Probing the Gas-Phase Dynamics of Graphene Chemical Vapour Deposition using in-situ UV Absorption Spectroscopy. Scientific Reports, 2017, 7, 6183.	1.6	6
23	Quality assessment of graphene: Continuity, uniformity, and accuracy of mobility measurements. Nano Research, 2017, 10, 3596-3605.	5.8	31
24	Suppression of intrinsic roughness in encapsulated graphene. Physical Review B, 2017, 96, .	1.1	30
25	Differences in inflammation and acute phase response but similar genotoxicity in mice following pulmonary exposure to graphene oxide and reduced graphene oxide. PLoS ONE, 2017, 12, e0178355.	1.1	71
26	The hot pick-up technique for batch assembly of van der Waals heterostructures. Nature Communications, 2016, 7, 11894.	5.8	446
27	Catalyst Interface Engineering for Improved 2D Film Lift-Off and Transfer. ACS Applied Materials & Interfaces, 2016, 8, 33072-33082.	4.0	40
28	Copper Oxidation through Nucleation Sites of Chemical Vapor Deposited Graphene. Chemistry of Materials, 2016, 28, 3789-3795.	3.2	44
29	Unforeseen high temperature and humidity stability of FeCl3 intercalated few layer graphene. Scientific Reports, 2015, 5, 7609.	1.6	41
30	Non-destructive electrochemical graphene transfer from reusable thin-film catalysts. Carbon, 2015, 85, 397-405.	5.4	41
31	Defect/oxygen assisted direct write technique for nanopatterning graphene. Nanoscale, 2015, 7, 6271-6277.	2.8	11
32	Graphene mobility mapping. Scientific Reports, 2015, 5, 12305.	1.6	89
33	Directed self-assembled crystalline oligomer domains on graphene and graphite. Nanotechnology, 2014, 25, 035602.	1.3	14
34	Graphene transport properties upon exposure to PMMA processing and heat treatments. 2D Materials, 2014, 1, 035005.	2.0	73
35	Pattern recognition approach to quantify the atomic structure of graphene. Carbon, 2014, 74, 363-366.	5.4	4
36	Graphene Edges Dictate the Morphology of Nanoparticles during Catalytic Channeling. Journal of Physical Chemistry C, 2014, 118, 4296-4302.	1.5	29

Тімотну Ј Воотн

#	Article	IF	CITATIONS
37	Electrically Continuous Graphene from Single Crystal Copper Verified by Terahertz Conductance Spectroscopy and Micro Four-Point Probe. Nano Letters, 2014, 14, 6348-6355.	4.5	74
38	Transfer induced compressive strain in graphene: Evidence from Raman spectroscopic mapping. Microelectronic Engineering, 2014, 121, 113-117.	1.1	32
39	Effective surface conductivity approach for graphene metamaterials based terahertz devices. , 2013, , .		1
40	Carbon mediated reduction of silicon dioxide and growth of copper silicide particles in uniform width channels. Journal of Applied Physics, 2013, 114, 114303.	1.1	2
41	In Situ TEM Creation and Electrical Characterization of Nanowire Devices. Nano Letters, 2012, 12, 2965-2970.	4.5	34
42	Controllable chemical vapor deposition of large area uniform nanocrystalline graphene directly on silicon dioxide. Journal of Applied Physics, 2012, 111, .	1.1	59
43	In Situ Tuning of Focused-Ion-Beam Defined Nanomechanical Resonators Using Joule Heating. Journal of Microelectromechanical Systems, 2011, 20, 1074-1080.	1.7	1
44	Discrete Dynamics of Nanoparticle Channelling in Suspended Graphene. Nano Letters, 2011, 11, 2689-2692.	4.5	77
45	Fast and direct measurements of the electrical properties of graphene using micro four-point probes. Nanotechnology, 2011, 22, 445702.	1.3	37
46	Optimization of FIB milling for rapid NEMS prototyping. Microelectronic Engineering, 2011, 88, 2671-2674.	1.1	4
47	Manipulation and <i>in situ</i> transmission electron microscope characterization of sub-100 nm nanostructures using a microfabricated nanogripper. Journal of Micromechanics and Microengineering, 2010, 20, 035009.	1.5	22
48	Customizablein situTEM devices fabricated in freestanding membranes by focused ion beam milling. Nanotechnology, 2010, 21, 405304.	1.3	12
49	Fine Structure Constant Defines Visual Transparency of Graphene. Science, 2008, 320, 1308-1308.	6.0	7,667
50	Macroscopic Graphene Membranes and Their Extraordinary Stiffness. Nano Letters, 2008, 8, 2442-2446.	4.5	607
51	Graphene-Based Liquid Crystal Device. Nano Letters, 2008, 8, 1704-1708.	4.5	1,441
52	Making graphene visible. Applied Physics Letters, 2007, 91, .	1.5	1,653
53	Electronic properties of graphene. Physica Status Solidi (B): Basic Research, 2007, 244, 4106-4111.	0.7	291
54	The structure of suspended graphene sheets. Nature, 2007, 446, 60-63.	13.7	4,511

4

#	Article	IF	CITATIONS
55	Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10451-10453.	3.3	10,229