
Velmurugan R

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7077867/publications.pdf Version: 2024-02-01

VELMURUCAN R

#	Article	IF	CITATIONS
1	Synthesis, molecular docking, antibacterial, antioxidant, and cytotoxicity activities of novel pyrido-cyclopenta[<i>b</i>]indole analogs. Synthetic Communications, 2020, 50, 1176-1189.	2.1	6
2	Novel indole derivatives as potential anticancer agents: Design, synthesis and biological screening. Medicinal Chemistry Research, 2018, 27, 321-331.	2.4	22
3	Structural and molecular docking studies of biologically active mercaptopyrimidine Schiff bases. Journal of Molecular Structure, 2017, 1127, 345-354.	3.6	37
4	Synthesis, Characterization, Single-Crystal XRD, and Biological Evaluation of Nickel(II) Salen Sulfadiazine Complex. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2016, 46, 1751-1758.	0.6	3
5	Synthesis, structure, and pharmacological evaluation of Co(III) complex containing tridentate Schiff base ligand. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2015, 41, 345-352.	1.0	19
6	A study of mechanism and operational parameters on solar light-induced degradation of Reactive Red 120 dye with AgBr-loaded TiO2. Research on Chemical Intermediates, 2015, 41, 1227-1241.	2.7	15
7	Sonochemical synthesis and characterization of barium fluoride–titanium dioxide nanocomposites and activity for photodegradation of Trypan Blue dye. Materials Science in Semiconductor Processing, 2014, 27, 654-664.	4.0	7
8	Synthesis of Pd co-doped nano-TiO2–SO42– and its synergetic effect on the solar photodegradation of Reactive Red 120 dye. Materials Science in Semiconductor Processing, 2014, 25, 163-172.	4.0	24
9	Preparation and characterization of carbon nanoparticles loaded TiO2 and its catalytic activity driven by natural sunlight. Solar Energy Materials and Solar Cells, 2013, 108, 205-212.	6.2	80
10	Cocrystallization of Diphenylamine and Picric acid (1:2). X-ray Structure Analysis Online, 2012, 28, 31-32.	0.2	4
11	Solar active nano-TiO2 for mineralization of Reactive Red 120 and Trypan Blue. Arabian Journal of Chemistry, 2012, 5, 447-452.	4.9	31
12	Photodegradation of an azo dye with reusable SrF2–TiO2 under UV light and influence of operational parameters. Separation and Purification Technology, 2012, 101, 98-106.	7.9	24
13	Synthesis of Ce co-doped Ag–ZnO photocatalyst with excellent performance for NBB dye degradation under natural sunlight illumination. Catalysis Science and Technology, 2012, 2, 2319.	4.1	190
14	Mesoporous nitrogen doped nano titania—A green photocatalyst for the effective reductive cleavage of azoxybenzenes to amines or 2-phenyl indazoles in methanol. Applied Catalysis A: General, 2012, 413-414, 213-222.	4.3	27
15	TiO2–SO42â^' as a novel solid acid catalyst for highly efficient, solvent free and easy synthesis of chalcones under microwave irradiation. Catalysis Communications, 2011, 12, 375-379.	3.3	55
16	An efficient reusable and antiphotocorrosive nano ZnO for the mineralization of Reactive Orange 4 under UV-A light. Separation and Purification Technology, 2011, 80, 119-124.	7.9	75
17	An efficient nanostructured ZnO for dye sensitized degradation of Reactive Red 120 dye under solar light. Solar Energy Materials and Solar Cells, 2011, 95, 942-950.	6.2	175
18	Direct electrochemistry and electrocatalysis of reduced glutathione on CNFs–PDDA/PB nanocomposite film modified ITO electrode for biosensors. Colloids and Surfaces B: Biointerfaces, 2011, 83, 347-354.	5.0	23

Velmurugan R

#	Article	IF	CITATIONS
19	Preparation, characterization and photocatalytic activity of acidic sulfated nano titania for the degradation of Reactive Orange 4 under UV light. Separation and Purification Technology, 2011, 77, 245-250.	7.9	17
20	6-Bromo-2-[(E)-thiophen-2-ylmethylidene]-2,3,4,9-tetrahydro-1H-carbazol-1-one. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o3271-o3271.	0.2	1
21	2-(6-Methyl-2,3,4,9-tetrahydro-1H-carbazol-1-ylidene)propanedinitrile. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o3270-o3270.	0.2	1
22	6-Bromo-2-(3-phenylallylidene)-2,3,4,9-tetrahydro-1H-carbazol-1-one. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o3269-o3269.	0.2	1
23	2-(6-Chloro-2,3,4,9-tetrahydro-1H-carbazol-1-ylidene)propanedinitrile. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o3268-o3268.	0.2	0
24	2-Aminopyridinium picrate. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o1821-o1821.	0.2	7
25	2-(1,2,3,4-Tetrahydro-9H-carbazol-1-ylidene)propanedinitrile. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o2965-o2965.	0.2	2
26	Benzamide–picric acid (1/1). Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o1820-o1820.	0.2	5
27	An efficient protocol for the green synthesis of quinoxaline and dipyridophenazine derivatives at room temperature using sulfated titania. Catalysis Communications, 2010, 11, 997-1002.	3.3	44
28	Influence of operational parameters on photodegradation of Acid Black 1 with ZnO. Desalination and Water Treatment, 2010, 24, 132-139.	1.0	92
29	Photocatalytic activity of surface fluorinated TiO2-P25 in the degradation of Reactive Orange 4. Journal of Hazardous Materials, 2009, 172, 914-921.	12.4	58
30	A simple one pot nano titania mediated green synthesis of 2-alkylbenzimidazoles and indazole from aromatic azides under UV and solar light. Catalysis Communications, 2009, 11, 280-284.	3.3	30