Hongbing Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7077780/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emerging chitin and chitosan nanofibrous materials for biomedical applications. Nanoscale, 2014, 6, 9477-9493.	2.8	305
2	Cellular Structured CNTs@SiO ₂ Nanofibrous Aerogels with Vertically Aligned Vessels for Saltâ€Resistant Solar Desalination. Advanced Materials, 2020, 32, e1908269.	11.1	257
3	Applications of chitin and chitosan nanofibers in bone regenerative engineering. Carbohydrate Polymers, 2020, 230, 115658.	5.1	213
4	Controlled Co-delivery of Growth Factors through Layer-by-Layer Assembly of Core–Shell Nanofibers for Improving Bone Regeneration. ACS Nano, 2019, 13, 6372-6382.	7.3	188
5	Chitosan/silk fibroin modified nanofibrous patches with mesenchymal stem cells prevent heart remodeling post-myocardial infarction in rats. Acta Biomaterialia, 2018, 80, 154-168.	4.1	167
6	Highly cost-effective and high-strength hydrogels as dye adsorbents from natural polymers: chitosan and cellulose. Polymer Chemistry, 2017, 8, 2913-2921.	1.9	165
7	Biomimetic LBL structured nanofibrous matrices assembled by chitosan/collagen for promoting wound healing. Biomaterials, 2015, 53, 58-75.	5.7	157
8	Chitin derived nitrogen-doped porous carbons with ultrahigh specific surface area and tailored hierarchical porosity for high performance supercapacitors. Journal of Bioresources and Bioproducts, 2021, 6, 142-151.	11.8	154
9	A dynamic and self-crosslinked polysaccharide hydrogel with autonomous self-healing ability. Soft Matter, 2015, 11, 3971-3976.	1.2	147
10	Advanced Silk Fibroin Biomaterials for Cartilage Regeneration. ACS Biomaterials Science and Engineering, 2018, 4, 2704-2715.	2.6	123
11	Reed Leaves Inspired Silica Nanofibrous Aerogels with Parallel-Arranged Vessels for Salt-Resistant Solar Desalination. ACS Nano, 2021, 15, 12256-12266.	7.3	121
12	Nanogels fabricated by lysozyme and sodium carboxymethyl cellulose for 5-fluorouracil controlled release. International Journal of Pharmaceutics, 2013, 441, 721-727.	2.6	113
13	Layer-by-layer immobilization of lysozyme–chitosan–organic rectorite composites on electrospun nanofibrous mats for pork preservation. Food Research International, 2012, 48, 784-791.	2.9	105
14	Layer-by-layer structured polysaccharides film-coated cellulose nanofibrous mats for cell culture. Carbohydrate Polymers, 2010, 80, 474-479.	5.1	102
15	Quaternized chitosan-layered silicate intercalated composites based nanofibrous mats and their antibacterial activity. Carbohydrate Polymers, 2012, 89, 307-313.	5.1	102
16	A study of chitosan hydrogel with embedded mesoporous silica nanoparticles loaded by ibuprofen as a dual stimuli-responsive drug release system for surface coating of titanium implants. Colloids and Surfaces B: Biointerfaces, 2014, 123, 657-663.	2.5	102
17	Ultrasensitive SERS Substrate Integrated with Uniform Subnanometer Scale "Hot Spots―Created by a Graphene Spacer for the Detection of Mercury Ions. Small, 2017, 13, 1603347.	5.2	101
18	Antibacterial multilayer films fabricated by layer-by-layer immobilizing lysozyme and gold nanoparticles on nanofibers. Colloids and Surfaces B: Biointerfaces, 2014, 116, 432-438.	2.5	99

#	Article	IF	CITATIONS
19	Recyclable Saccharomyces cerevisiae loaded nanofibrous mats with sandwich structure constructing via bio-electrospraying for heavy metal removal. Journal of Hazardous Materials, 2017, 324, 365-372.	6.5	95
20	Enhanced bacterial inhibition activity of layer-by-layer structured polysaccharide film-coated cellulose nanofibrous mats via addition of layered silicate. Carbohydrate Polymers, 2011, 83, 239-245.	5.1	94
21	Chitosan-based drug delivery systems: From synthesis strategy to osteomyelitis treatment – A review. Carbohydrate Polymers, 2021, 251, 117063.	5.1	90
22	Antibacterial activity of nanofibrous mats coated with lysozyme-layered silicate composites via electrospraying. Carbohydrate Polymers, 2014, 99, 218-225.	5.1	86
23	Pectin/lysozyme bilayers layer-by-layer deposited cellulose nanofibrous mats for antibacterial application. Carbohydrate Polymers, 2015, 117, 687-693.	5.1	86
24	Electrodeposition of Ag nanoparticles on conductive polyaniline/cellulose aerogels with increased synergistic effect for energy storage. Carbohydrate Polymers, 2017, 156, 19-25.	5.1	86
25	Iron(II) cross-linked chitin-based gel beads: Preparation, magnetic property and adsorption of methyl orange. Carbohydrate Polymers, 2010, 82, 706-713.	5.1	83
26	Functional Nanoparticles in Targeting Glioma Diagnosis and Therapies. Journal of Nanoscience and Nanotechnology, 2014, 14, 415-432.	0.9	80
27	Plasma treated polyethylene terephthalate/polypropylene films assembled with chitosan and various preservatives for antimicrobial food packaging. Colloids and Surfaces B: Biointerfaces, 2014, 114, 60-66.	2.5	80
28	KGM and PMAA based pH-sensitive interpenetrating polymer network hydrogel for controlled drug release. Carbohydrate Polymers, 2013, 97, 565-570.	5.1	76
29	Near-Infrared Light-Triggered Porous AuPd Alloy Nanoparticles To Produce Mild Localized Heat To Accelerate Bone Regeneration. Journal of Physical Chemistry Letters, 2019, 10, 4185-4191.	2.1	76
30	Enhanced physical and biological properties of silk fibroin nanofibers by layer-by-layer deposition of chitosan and rectorite. Journal of Colloid and Interface Science, 2018, 523, 208-216.	5.0	75
31	Antibacterial hydrogel coating by electrophoretic co-deposition of chitosan/alkynyl chitosan. Carbohydrate Polymers, 2013, 98, 1547-1552.	5.1	74
32	Fabrication of polymer/layered silicate intercalated nanofibrous mats and their bacterial inhibition activity. Carbohydrate Polymers, 2011, 83, 973-978.	5.1	70
33	Poly(vinyl alcohol)/sodium alginate/layered silicate based nanofibrous mats for bacterial inhibition. Carbohydrate Polymers, 2013, 92, 2232-2238.	5.1	70
34	Construction of horizontal stratum landform-like composite foams and their methyl orange adsorption capacity. Applied Surface Science, 2017, 397, 133-143.	3.1	70
35	Carboxymethyl chitosan/sodium alginate-based micron-fibers fabricated by emulsion electrospinning for periosteal tissue engineering. Materials and Design, 2020, 194, 108849.	3.3	70
36	Nanofibrous mats layer-by-layer assembled via electrospun cellulose acetate and electrosprayed chitosan for cell culture. European Polymer Journal, 2012, 48, 1846-1853.	2.6	69

#	Article	IF	CITATIONS
37	Electrochemical writing on edible polysaccharide films for intelligent food packaging. Carbohydrate Polymers, 2018, 186, 236-242.	5.1	69
38	Layer-by-layer immobilization of quaternized carboxymethyl chitosan/organic rectorite and alginate onto nanofibrous mats and their antibacterial application. Carbohydrate Polymers, 2015, 121, 428-435.	5.1	68
39	Chitosan/tannic acid bilayers layer-by-layer deposited cellulose nanofibrous mats for antibacterial application. International Journal of Biological Macromolecules, 2019, 139, 191-198.	3.6	68
40	Accelerating dermal wound healing and mitigating excessive scar formation using LBL modified nanofibrous mats. Materials and Design, 2020, 185, 108265.	3.3	67
41	Coding for hydrogel organization through signal guided self-assembly. Soft Matter, 2014, 10, 465-469.	1.2	66
42	Fabrication of cellulose nanofibers from waste brown algae and their potential application as milk thickeners. Food Hydrocolloids, 2018, 79, 473-481.	5.6	66
43	Layer-by-layer immobilization of amphoteric carboxymethyl chitosan onto biocompatible silk fibroin nanofibrous mats. Carbohydrate Polymers, 2019, 210, 9-16.	5.1	66
44	Chitosan/polydopamine layer by layer self-assembled silk fibroin nanofibers for biomedical applications. Carbohydrate Polymers, 2021, 251, 117058.	5.1	65
45	Incorporating platelet-rich plasma into coaxial electrospun nanofibers for bone tissue engineering. International Journal of Pharmaceutics, 2018, 547, 656-666.	2.6	64
46	Acrylic acid-grafted pre-plasma nanofibers for efficient removal of oil pollution from aquatic environment. Journal of Hazardous Materials, 2019, 371, 165-174.	6.5	64
47	Chitosan-rectorite nanospheres embedded aminated polyacrylonitrile nanofibers via shoulder-to-shoulder electrospinning and electrospraying for enhanced heavy metal removal. Applied Surface Science, 2018, 437, 294-303.	3.1	63
48	Accelerated skin wound healing by soy protein isolate–modified hydroxypropyl chitosan composite films. International Journal of Biological Macromolecules, 2018, 118, 1293-1302.	3.6	61
49	Flexible Polysaccharide Hydrogel with pHâ€Regulated Recovery of Selfâ€Healing and Mechanical Properties. Macromolecular Materials and Engineering, 2017, 302, 1700221.	1.7	59
50	Antibacterial multilayer films fabricated by LBL immobilizing lysozyme and HTCC on nanofibrous mats. International Journal of Biological Macromolecules, 2013, 53, 26-31.	3.6	57
51	Construction of lysozyme exfoliated rectoriteâ€based electrospun nanofibrous membranes for bacterial inhibition. Journal of Applied Polymer Science, 2015, 132, .	1.3	56
52	Graphene oxide-modified electrospun polyvinyl alcohol nanofibrous scaffolds with potential as skin wound dressings. RSC Advances, 2017, 7, 28826-28836.	1.7	54
53	Incorporating chitin derived glucosamine sulfate into nanofibers via coaxial electrospinning for cartilage regeneration. Carbohydrate Polymers, 2020, 229, 115544.	5.1	53
54	Silver ions/ovalbumin films layer-by-layer self-assembled polyacrylonitrile nanofibrous mats and their antibacterial activity. Colloids and Surfaces B: Biointerfaces, 2013, 108, 322-328.	2.5	51

#	Article	IF	CITATIONS
55	Novel Layer-by-Layer Structured Nanofibrous Mats Coated by Protein Films for Dermal Regeneration. Journal of Biomedical Nanotechnology, 2014, 10, 803-810.	0.5	51
56	Chitin-based fast responsive pH sensitive microspheres for controlled drug release. Carbohydrate Polymers, 2014, 102, 413-418.	5.1	51
57	Controllable immobilization of naringinase on electrospun cellulose acetate nanofibers and their application to juice debittering. International Journal of Biological Macromolecules, 2017, 98, 630-636.	3.6	50
58	Electro-molecular Assembly: Electrical Writing of Information into an Erasable Polysaccharide Medium. ACS Applied Materials & Interfaces, 2016, 8, 19780-19786.	4.0	49
59	Janus Fibrous Mats Based Suspended Type Evaporator for Salt Resistant Solar Desalination and Salt Recovery. Small, 2022, 18, e2107156.	5.2	48
60	Compartmentalized Multilayer Hydrogel Formation Using a Stimulus-Responsive Self-Assembling Polysaccharide. ACS Applied Materials & Interfaces, 2014, 6, 2948-2957.	4.0	47
61	Incorporation of rectorite into porous polycaprolactone/TiO2 nanofibrous mats for enhancing photocatalysis properties towards organic dye pollution. Composites Communications, 2019, 15, 58-63.	3.3	47
62	Electrochemical deposition to construct a nature inspired multilayer chitosan/layered double hydroxides hybrid gel for stimuli responsive release of protein. Journal of Materials Chemistry B, 2015, 3, 7577-7584.	2.9	46
63	Electroassembly of Chitin Nanoparticles to Construct Freestanding Hydrogels and High Porous Aerogels for Wound Healing. ACS Applied Materials & Interfaces, 2019, 11, 34766-34776.	4.0	46
64	Quaternized chitosan–organic rectorite intercalated composites based nanoparticles for protein controlled release. International Journal of Pharmaceutics, 2012, 438, 258-265.	2.6	44
65	Stretchable, tough, self-recoverable, and cytocompatible chitosan/cellulose nanocrystals/polyacrylamide hybrid hydrogels. Carbohydrate Polymers, 2019, 222, 114977.	5.1	44
66	Antimicrobial application of nanofibrous mats self-assembled with chitosan and epigallocatechin gallate. Colloids and Surfaces B: Biointerfaces, 2016, 145, 643-652.	2.5	42
67	Chitosan-rectorite nanospheres immobilized on polystyrene fibrous mats via alternate electrospinning/electrospraying techniques for copper ions adsorption. Applied Surface Science, 2017, 426, 545-553.	3.1	42
68	Incorporation of lysozyme-rectorite composites into chitosan films for antibacterial properties enhancement. International Journal of Biological Macromolecules, 2017, 102, 789-795.	3.6	41
69	Biomimetic Silk Fibroin Hydrogels Strengthened by Silica Nanoparticles Distributed Nanofibers Facilitate Bone Repair. Advanced Healthcare Materials, 2021, 10, e2001646.	3.9	41
70	Quaternized Chitosan/Alginate-Fe ₃ O ₄ Magnetic Nanoparticles Enhance the Chemosensitization of Multidrug-Resistant Gastric Carcinoma by Regulating Cell Autophagy Activity in Mice. Journal of Biomedical Nanotechnology, 2016, 12, 948-961.	0.5	40
71	Remote controlled drug release from multi-functional Fe3O4/GO/Chitosan microspheres fabricated by an electrospray method. Colloids and Surfaces B: Biointerfaces, 2017, 151, 354-362.	2.5	40
72	Adsorption of natural composite sandwich-like nanofibrous mats for heavy metals in aquatic environment. Journal of Colloid and Interface Science, 2019, 539, 533-544.	5.0	40

#	Article	IF	CITATIONS
73	Promoting osteogenic differentiation in pre-osteoblasts and reducing tibial fracture healing time using functional nanofibers. Nano Research, 2018, 11, 3658-3677.	5.8	38
74	Antimicrobial application of nanofibrous mats self-assembled with quaternized chitosan and soy protein isolate. Carbohydrate Polymers, 2015, 133, 229-235.	5.1	36
75	Alginate/quaternized carboxymethyl chitosan/clay nanocomposite microspheres: preparation and drug-controlled release behavior. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 589-605.	1.9	35
76	Construction of highly biocompatible hydroxyethyl cellulose/soy protein isolate composite sponges for tissue engineering. Chemical Engineering Journal, 2018, 341, 402-413.	6.6	35
77	Controlled release of adenosine from core-shell nanofibers to promote bone regeneration through STAT3 signaling pathway. Journal of Controlled Release, 2020, 319, 234-245.	4.8	35
78	Chitosan and collagen layer-by-layer assembly modified oriented nanofibers and their biological properties. Carbohydrate Polymers, 2021, 254, 117438.	5.1	35
79	Antibacterial and hemostatic performance of chitosan–organic rectorite/alginate composite sponge. RSC Advances, 2015, 5, 50523-50531.	1.7	34
80	Ion-responsive chitosan hydrogel actuator inspired by carrotwood seed pod. Carbohydrate Polymers, 2022, 276, 118759.	5.1	34
81	Characterization and cytotoxicity study of nanofibrous mats incorporating rectorite and carbon nanotubes. RSC Advances, 2014, 4, 33355.	1.7	33
82	Extracellular matrix imitation utilizing nanofibers-embedded biomimetic scaffolds for facilitating cartilage regeneration. Chemical Engineering Journal, 2021, 410, 128379.	6.6	33
83	Urea free synthesis of chitin-based acrylate superabsorbent polymers under homogeneous conditions: Effects of the degree of deacetylation and the molecular weight. Carbohydrate Polymers, 2017, 174, 464-473.	5.1	31
84	Natural polysaccharides based self-assembled nanoparticles for biomedical applications – A review. International Journal of Biological Macromolecules, 2021, 192, 1240-1255.	3.6	31
85	Regulating the gaps between folds on the surface of silk fibroin membranes via LBL deposition for improving their biomedical properties. Colloids and Surfaces B: Biointerfaces, 2017, 154, 228-238.	2.5	30
86	A versatile and injectable poly(methyl methacrylate) cement functionalized with quaternized chitosan-glycerophosphate/nanosized hydroxyapatite hydrogels. Materials Science and Engineering C, 2018, 90, 264-272.	3.8	30
87	Magnesium-containing silk fibroin/polycaprolactone electrospun nanofibrous scaffolds for accelerating bone regeneration. Arabian Journal of Chemistry, 2020, 13, 5526-5538.	2.3	30
88	Carboxymethyl chitin/organic rectorite composites based nanofibrous mats and their cell compatibility. Carbohydrate Polymers, 2012, 90, 1069-1074.	5.1	29
89	Homogeneous synthesis of chitin-based acrylate superabsorbents in NaOH/urea solution. Carbohydrate Polymers, 2013, 94, 261-271.	5.1	29
90	Cytotoxicity and antibacterial ability of scaffolds immobilized by polysaccharide/layered silicate composites. Carbohydrate Polymers, 2013, 92, 1880-1886.	5.1	28

#	Article	IF	CITATIONS
91	Electrical Writing onto a Dynamically Responsive Polysaccharide Medium: Patterning Structure and Function into a Reconfigurable Medium. Advanced Functional Materials, 2018, 28, 1803139.	7.8	27
92	Electrical signal guided click coating of chitosan hydrogel on conductive surface. RSC Advances, 2014, 4, 13477.	1.7	26
93	Fabrication of rectorite-contained nanoparticles for drug delivery with a green and one-step synthesis method. International Journal of Pharmaceutics, 2015, 493, 426-433.	2.6	26
94	LBL fabricated biopolymer-layered silicate based nanofibrous mats and their cell compatibility studies. Carbohydrate Polymers, 2012, 90, 957-966.	5.1	24
95	Lysozyme/collagen multilayers layer-by-layer deposited nanofibers with enhanced biocompatibility and antibacterial activity. Materials Science and Engineering C, 2020, 112, 110868.	3.8	24
96	Chitosan-based recyclable composite aerogels for the photocatalytic degradation of rhodamine B. Carbohydrate Polymers, 2021, 273, 118559.	5.1	24
97	Novel Polymer-Layered Silicate Intercalated Composite Beads for Drug Delivery. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 1-14.	1.9	23
98	Electrochemically induced reversible formation of carboxymethyl chitin hydrogel and tunable protein release. New Journal of Chemistry, 2015, 39, 1253-1259.	1.4	23
99	LBL deposition of chitosan and silk fibroin on nanofibers for improving physical and biological performance of patches. International Journal of Biological Macromolecules, 2019, 130, 348-356.	3.6	23
100	TiO2/rectorite-trapped cellulose composite nanofibrous mats for multiple heavy metal adsorption. International Journal of Biological Macromolecules, 2021, 183, 245-253.	3.6	23
101	Production of thick uniform-coating films containing rectorite on nanofibers through the use of an automated coating machine. Colloids and Surfaces B: Biointerfaces, 2017, 149, 271-279.	2.5	22
102	Low-temperature plasma treatment-assisted layer-by-layer self-assembly for the modification of nanofibrous mats. Journal of Colloid and Interface Science, 2019, 540, 535-543.	5.0	22
103	LBL structured chitosan-layered silicate intercalated composites based fibrous mats for protein delivery. Carbohydrate Polymers, 2012, 90, 1656-1663.	5.1	21
104	Hydroxypropyl chitosan/organic rectorite-based nanofibrous mats with intercalated structure for bacterial inhibition. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 485-496.	1.9	21
105	Electrodeposition to construct free-standing chitosan/layered double hydroxides hydro-membrane for electrically triggered protein release. Colloids and Surfaces B: Biointerfaces, 2017, 158, 474-479.	2.5	21
106	Electrical Writing Induced Covalent Cross-Linking on Hydrogel for Multidimensional Structural Information Storage. ACS Applied Materials & Interfaces, 2021, 13, 36538-36547.	4.0	21
107	Tunable thermosensitive behavior of multiple responsive chitin. Journal of Materials Chemistry B, 2014, 2, 3050.	2.9	20
108	Layer-by-Layer Immobilized Catalase on Electrospun Nanofibrous Mats Protects Against Oxidative Stress Induced by Hydrogen Peroxide. Journal of Biomedical Nanotechnology, 2014, 10, 1346-1358.	0.5	20

#	Article	IF	CITATIONS
109	Beneficial effects of biomimetic nano-sized hydroxyapatite/antibiotic gentamicin enriched chitosan–glycerophosphate hydrogel on the performance of injectable polymethylmethacrylate. RSC Advances, 2015, 5, 91082-91092.	1.7	20
110	Fabrication of self-assembled chitosan-dispersed LDL nanoparticles for drug delivery with a one-step green method. International Journal of Pharmaceutics, 2017, 517, 25-34.	2.6	20
111	Spherical and rodlike inorganic nanoparticle regulated the orientation of carbon nanotubes in polymer nanofibers. Chemical Physics Letters, 2016, 650, 82-87.	1.2	19
112	Pore volume and distribution regulation of highly nanoporous titanium dioxide nanofibers and their photovoltaic properties. Journal of Colloid and Interface Science, 2017, 490, 74-83.	5.0	19
113	Porous structured cellulose microsphere acts as biosensor for glucose detection with "signal-and-color―output. Carbohydrate Polymers, 2019, 205, 295-301.	5.1	19
114	Synergistic enhancement of cytotoxicity against cancer cells by incorporation of rectorite into the paclitaxel immobilized cellulose acetate nanofibers. International Journal of Biological Macromolecules, 2020, 152, 672-680.	3.6	19
115	Chitosan-TiO2 microparticles LBL immobilized nanofibrous mats via electrospraying for antibacterial applications. International Journal of Biological Macromolecules, 2019, 135, 233-239.	3.6	18
116	Construction of porous chitosan–xylan–TiO2 hybrid with highly efficient sorption capability on heavy metals. Journal of Environmental Chemical Engineering, 2014, 2, 1568-1577.	3.3	16
117	Rectorite-intercalated nanoparticles for improving controlled release of doxorubicin hydrochloride. International Journal of Biological Macromolecules, 2017, 101, 815-822.	3.6	16
118	Electrospun Nanofibers for Food and Food Packaging Technology. , 2019, , 455-516.		16
119	Egg source natural proteins LBL modified cellulose nanofibrous mats and their cellular compatibility. Carbohydrate Polymers, 2019, 213, 329-337.	5.1	16
120	Application of synthetic and natural polymers in surgical mesh for pelvic floor reconstruction. Materials and Design, 2021, 209, 109984.	3.3	16
121	Carboxymethyl chitosan assembled piezoelectric biosensor for rapid and label-free quantification of immunoglobulin Y. Carbohydrate Polymers, 2022, 290, 119482.	5.1	16
122	Electrodeposition induced covalent cross-linking of chitosan for electrofabrication of hydrogel contact lenses. Carbohydrate Polymers, 2022, 292, 119678.	5.1	16
123	Protein–polymer co-induced exfoliated layered silicate structure based nanofibrous mats and their cytotoxicity. RSC Advances, 2014, 4, 8867.	1.7	15
124	Ordered hollow nanofiber aerogel with revivability for efficient oil absorption. Journal of Cleaner Production, 2021, 290, 125789.	4.6	15
125	Nanofibrous mats coated by homocharged biopolymer-layered silicate nanoparticles and their antitumor activity. Colloids and Surfaces B: Biointerfaces, 2013, 105, 137-143.	2.5	14
126	Cytotoxicity of Calcium Rectorite Micro/Nanoparticles before and after Organic Modification. Chemical Research in Toxicology, 2014, 27, 1401-1410.	1.7	14

#	Article	IF	CITATIONS
127	Pectin based composite nanofabrics incorporated with layered silicate and their cytotoxicity. International Journal of Biological Macromolecules, 2016, 93, 123-130.	3.6	14
128	Structure and properties of chitin/alginate blend membranes from NaOH/urea aqueous solution. International Journal of Biological Macromolecules, 2012, 51, 1121-1126.	3.6	13
129	Nanofibrous Mats Layer-by-Layer Assembled by HTCC/Layered Silicate Composites withIn Vitro Antitumor Activity Against SMMC-7721 Cells. Journal of Biomedical Nanotechnology, 2014, 10, 485-499.	0.5	13
130	Highly sensitive formaldehyde sensors based on CuO/ZnO composite nanofibrous mats using porous cellulose acetate fibers as templates. International Journal of Biological Macromolecules, 2022, 206, 653-660.	3.6	12
131	Multilayer composite beads constructed via layer-by-layer self-assembly for lysozyme controlled release. RSC Advances, 2014, 4, 24369-24376.	1.7	11
132	Antifatigue Hydration-Induced Polysaccharide Hydrogel Actuators Inspired by Crab Joint Wrinkles. ACS Applied Materials & Interfaces, 2022, 14, 6251-6260.	4.0	11
133	Antimicrobial activity and cytotoxicity of nanofibrous mats immobilized with polysaccharides-rectorite based nanogels. Colloids and Surfaces B: Biointerfaces, 2015, 133, 370-377.	2.5	10
134	One-step electrodeposition of Janus chitosan coating for metallic implants with anti-corrosion properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128498.	2.3	10
135	A simple mechanical agitation method to fabricate chitin nanogels directly from chitin solution and subsequent surface modification. Journal of Materials Chemistry B, 2019, 7, 2226-2232.	2.9	9
136	Tubular chitosan hydrogels with a tuneable lamellar structure programmed by electrical signals. Chemical Communications, 2022, 58, 5781-5784.	2.2	9
137	Cytotoxicity and Antibacterial Activity of Chitosan-organic Rectorite Intercalated Nanofibrous Mats. Current Nanoscience, 2013, 9, 8-13.	0.7	7
138	Electrical Writing to Threeâ€Dimensional Pattern Dynamic Polysaccharide Hydrogel for Programmable Shape Deformation. Macromolecular Rapid Communications, 2021, 42, e2000342.	2.0	7
139	Enhanced cellular compatibility of chitosan/collagen multilayers LBL modified nanofibrous mats. Materials and Design, 2021, 205, 109717.	3.3	7
140	Hollow chitosan hydrogel tube with controllable wrinkled pattern via film-to-tube fabrication. Carbohydrate Polymers, 2022, 287, 119333.	5.1	6
141	Presence of nano-sized chitosan-layered silicate composites protects against toxicity induced by lead ions. Carbohydrate Polymers, 2017, 158, 1-10.	5.1	5
142	Dualâ€drug release from chitinâ€based core–shell microspheres fabricated by coaxial electrospray. Advances in Polymer Technology, 2018, 37, 1366-1373.	0.8	5
143	Incorporation of Layered Rectorite into Biocompatible Core–Sheath Nanofibrous Mats for Sustained Drug Delivery. ACS Biomaterials Science and Engineering, 2021, 7, 4509-4520.	2.6	5
144	Chitosan/collagen layer-by-layer deposition for improving the esophageal regeneration ability of nanofibrous mats. Carbohydrate Polymers, 2022, 286, 119269.	5.1	5

#	Article	IF	CITATIONS
145	Glucosamine/collagen assembled biomimetic nanofibrous mats via LBL deposition for cartilage engineering. Applied Surface Science, 2021, 540, 148335.	3.1	3
146	Nanomaterials From Mixed-Layer Clay Minerals: Structure, Properties, and Functional Applications. , 2019, , 365-413.		2
147	Electrical signals regulate the release of insulin from electrodeposited chitosan composite hydrogel: An in vitro and in vivo study. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 2464-2471.	1.6	2
148	MOLECULAR IMAGING OF ATHEROSCLEROTIC PLAQUE VIA PROFILIN-1 ANTIBODY LABELLED QUATERNISED CHITOSAN ENCAPSULATED MAGNETIC NANOPARTICLES. Heart, 2012, 98, E116.1-E116.	1.2	0
149	Cytotoxicity and Antibacterial Activity of Chitosan-organic Rectorite Intercalated Nanofibrous Mats. Current Nanoscience, 2013, 9, 8-13.	0.7	0