
Francisco Javier MartÃ-n-Torres

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/707748/publications.pdf Version: 2024-02-01

Francisco Javier

#	Article	IF	CITATIONS
1	Numerical heat transfer study of a space environmental testing facility using COMSOL Multiphysics. Thermal Science and Engineering Progress, 2022, 29, 101205.	1.3	3
2	Subsurface robotic exploration for geomorphology, astrobiology and mining during MINAR6 campaign, Boulby Mine, UK: part II (Results and Discussion). International Journal of Astrobiology, 2021, 20, 93-108.	0.9	0
3	Toward More Realistic Simulation and Prediction of Dust Storms on Mars. , 2021, 53, .		3
4	A Review of Sample Analysis at Mars-Evolved Gas Analysis Laboratory Analog Work Supporting the Presence of Perchlorates and Chlorates in Gale Crater, Mars. Minerals (Basel, Switzerland), 2021, 11, 475.	0.8	14
5	PACKMAN – A portable instrument to investigate space weather. HardwareX, 2021, 9, e00169.	1.1	4
6	Measuring Electrical Conductivity to Study the Formation of Brines Under Martian Conditions. Journal of Visualized Experiments, 2021, , .	0.2	2
7	Experimental Investigation of the Atmosphere-Regolith Water Cycle on Present-Day Mars. Sensors, 2021, 21, 7421.	2.1	4
8	Brine-Induced Tribocorrosion Accelerates Wear on Stainless Steel: Implications for Mars Exploration. Advances in Astronomy, 2021, 2021, 1-11.	0.5	0
9	The Impact of the Spectral Radiation Environment on the Maximum Absorption Wavelengths of Human Vision and Other Species. Life, 2021, 11, 1337.	1.1	2
10	Ladakh: diverse, high-altitude extreme environments for off-earth analogue and astrobiology research. International Journal of Astrobiology, 2020, 19, 78-98.	0.9	20
11	Subsurface robotic exploration for geomorphology, astrobiology and mining during MINAR6 campaign, Boulby Mine, UK: part I (Rover development). International Journal of Astrobiology, 2020, 19, 110-125.	0.9	4
12	A Hybrid Statistical-Dynamical Downscaling of Air Temperature over Scandinavia Using the WRF Model. Advances in Atmospheric Sciences, 2020, 37, 57-74.	1.9	11
13	DFT study of electronic and redox properties of TiO2 supported on olivine for modelling regolith on Moon and Mars conditions. Planetary and Space Science, 2020, 180, 104760.	0.9	4
14	ATMO-vent: An adapted breathing atmosphere for COVID-19 patients. HardwareX, 2020, 8, e00145.	1.1	7
15	Development of a wind retrieval method for low-speed low-pressure flows for ExoMars. Applied Thermal Engineering, 2020, 180, 115752.	3.0	3
16	Pressure Optimized PowEred Respirator (PROPER): A miniaturized wearable cleanroom and biosafety system for aerially transmitted viral infections such as COVID-19. HardwareX, 2020, 8, e00144.	1.1	4
17	Space Environmental Chamber for Planetary Studies. Sensors, 2020, 20, 3996.	2.1	18
18	Atmospheric composition of exoplanets based on the thermal escape of gases and implications for habitability. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20200148.	1.0	6

#	Article	IF	CITATIONS
19	Fully Interactive and Refined Resolution Simulations of the Martian Dust Cycle by the MarsWRF Model. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006253.	1.5	7
20	Metabolt: An In-Situ Instrument to Characterize the Metabolic Activity of Microbial Soil Ecosystems Using Electrochemical and Gaseous Signatures. Sensors, 2020, 20, 4479.	2.1	1
21	The HABIT (HabitAbility: Brine Irradiation and Temperature) environmental instrument for the ExoMars 2022 Surface Platform. Planetary and Space Science, 2020, 190, 104968.	0.9	10
22	Implementing bioburden reduction and control on the deliquescent hydrogel of the HABIT/ExoMars 2022 instrument. Acta Astronautica, 2020, 173, 232-239.	1.7	4
23	Small Lava Caves as Possible Exploratory Targets on Mars: Analogies Drawn from UAV Imaging of an Icelandic Lava Field. Remote Sensing, 2020, 12, 1970.	1.8	4
24	DFT study of the reduction reaction of calcium perchlorate on olivine surface: Implications to formation of Martian's regolith. Applied Surface Science, 2020, 512, 145634.	3.1	5
25	Wind retrieval from temperature measurements from the Rover Environmental Monitoring Station/Mars Science Laboratory. Icarus, 2020, 346, 113785.	1.1	8
26	UV/Vis+ photochemistry database: Structure, content and applications. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 253, 107056.	1.1	14
27	Spatial Variations in the Altitude of the CH ₄ Homopause at Jupiter's Mid-to-high Latitudes, as Constrained from IRTF-TEXES Spectra. Planetary Science Journal, 2020, 1, 85.	1.5	9
28	Subsurface scientific exploration of extraterrestrial environments (MINAR 5): analogue science, technology and education in the Boulby Mine, UK. International Journal of Astrobiology, 2019, 18, 157-182.	0.9	17
29	Chemobrionic Fabrication of Hierarchical Selfâ€Assembling Nanostructures of Copper Oxide and Hydroxide. ChemSystemsChem, 2019, 1, e1900011.	1.1	8
30	Calibration and preliminary tests of the Brine Observation Transition To Liquid Experiment on HABIT/ExoMars 2020 for demonstration of liquid water stability on Mars. Acta Astronautica, 2019, 162, 497-510.	1.7	9
31	Sample Collection and Return from Mars: Optimising Sample Collection Based on the Microbial Ecology of Terrestrial Volcanic Environments. Space Science Reviews, 2019, 215, 1.	3.7	6
32	MARSWRF Prediction of Entry Descent Landing Profiles: Applications to Mars Exploration. Earth and Space Science, 2019, 6, 1440-1459.	1.1	8
33	Seasonal Variations in Atmospheric Composition as Measured in Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2019, 124, 3000-3024.	1.5	71
34	UAV Imaging of a Martian Brine Analogue Environment in a Fluvio-Aeolian Setting. Remote Sensing, 2019, 11, 2104.	1.8	5
35	Aeolian transport of viable microbial life across the Atacama Desert, Chile: Implications for Mars. Scientific Reports, 2019, 9, 11024.	1.6	36
36	Distribution and Morphologies of Transverse Aeolian Ridges in ExoMars 2020 Rover Landing Site. Remote Sensing, 2019, 11, 912.	1.8	15

#	Article	IF	CITATIONS
37	A surface temperature and moisture intercomparison study of the Weather Research and Forecasting model, inâ€situ measurements and satellite observations over the Atacama Desert. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 2202-2220.	1.0	17
38	Weather Simulation Uncertainty Estimation Using Bayesian Hierarchical Models. Journal of Applied Meteorology and Climatology, 2019, 58, 585-603.	0.6	5
39	No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations. Nature, 2019, 568, 517-520.	13.7	111
40	Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter. Nature, 2019, 568, 521-525.	13.7	107
41	Discovery of recurring slope lineae candidates in Mawrth Vallis, Mars. Scientific Reports, 2019, 9, 2040.	1.6	12
42	The Infinite Learning Chain. Flipped Professional Labs for Learning and Knowledge Co-Creation. Open Education Studies, 2019, 1, 151-176.	0.4	0
43	Quantifying the Congruence between Air and Land Surface Temperatures for Various Climatic and Elevation Zones of Western Himalaya. Remote Sensing, 2019, 11, 2889.	1.8	12
44	Are Slope Streaks Indicative of Globalâ€5cale Aqueous Processes on Contemporary Mars?. Reviews of Geophysics, 2019, 57, 48-77.	9.0	27
45	Abiotic Input of Fixed Nitrogen by Bolide Impacts to Gale Crater During the Hesperian: Insights From the Mars Science Laboratory. Journal of Geophysical Research E: Planets, 2019, 124, 94-113.	1.5	23
46	Mars Science Laboratory Observations of the 2018/Mars Year 34 Global Dust Storm. Geophysical Research Letters, 2019, 46, 71-79.	1.5	138
47	High-resolution dynamical downscaling of re-analysis data over the Kerguelen Islands using the WRF model. Theoretical and Applied Climatology, 2019, 135, 1259-1277.	1.3	6
48	Meso-microscale coupling for wind resource assessment using averaged atmospheric stability conditions. Meteorologische Zeitschrift, 2019, 28, 273-291.	0.5	12
49	The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter. Space Science Reviews, 2018, 214, 1.	3.7	119
50	Planetary boundary layer and circulation dynamics at Gale Crater, Mars. Icarus, 2018, 302, 537-559.	1.1	32
51	Adsorption of methane and CO 2 onto olivine surfaces in Martian dust conditions. Planetary and Space Science, 2018, 153, 163-171.	0.9	7
52	Self-Sustainable Monitoring Station for Extreme Environments (S3ME2): Design and validation. , 2018, ,		1
53	VISTA Instrument: A PCM-Based Sensor for Organics and Volatiles Characterization by Using Thermogravimetric Technique. , 2018, , .		4
54	Wind Forecasts for Rocket and Balloon Launches at the Esrange Space Center Using the WRF Model. Weather and Forecasting, 2018, 33, 813-833.	0.5	2

#	Article	IF	CITATIONS
55	Martian Eolian Dust Probed by ChemCam. Geophysical Research Letters, 2018, 45, 10,968.	1.5	40
56	Heterogeneity in topographic control on velocities of Western Himalayan glaciers. Scientific Reports, 2018, 8, 12843.	1.6	35
57	Background levels of methane in Mars' atmosphere show strong seasonal variations. Science, 2018, 360, 1093-1096.	6.0	224
58	Analysis of wind-induced dynamic pressure fluctuations during one and a half Martian years at Gale Crater. Icarus, 2017, 288, 78-87.	1.1	15
59	Should We Invest in Martian Brine Research to Reduce Mars Exploration Costs?. Astrobiology, 2017, 17, 3-7.	1.5	8
60	Interplanetary Coronal Mass Ejection effects on thermospheric density as inferred from International Space Station orbital data. Advances in Space Research, 2017, 60, 2233-2251.	1.2	2
61	Martian slope streaks as plausible indicators of transient water activity. Scientific Reports, 2017, 7, 7074.	1.6	42
62	Infrared Spectrometer for ExoMars: A Mast-Mounted Instrument for the Rover. Astrobiology, 2017, 17, 542-564.	1.5	61
63	Petrographic and geochemical evidence for multiphase formation of carbonates in the Martian orthopyroxenite Allan Hills 84001. Meteoritics and Planetary Science, 2017, 52, 1030-1047.	0.7	13
64	A review on remotely sensed land surface temperature anomaly as an earthquake precursor. International Journal of Applied Earth Observation and Geoinformation, 2017, 63, 158-166.	1.4	32
65	The Vertical Dust Profile Over Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2017, 122, 2779-2792.	1.5	22
66	MODIS-based estimates of strong snow surface temperature anomaly related to high altitude earthquakes of 2015. Remote Sensing of Environment, 2017, 188, 1-8.	4.6	23
67	Himalayan glaciers experienced significant mass loss during later phases of little ice age. Scientific Reports, 2017, 7, 10305.	1.6	57
68	Oxidation of manganese in an ancient aquifer, Kimberley formation, Gale crater, Mars. Geophysical Research Letters, 2016, 43, 7398-7407.	1.5	110
69	Convective vortices and dust devils at the MSL landing site: Annual variability. Journal of Geophysical Research E: Planets, 2016, 121, 1514-1549.	1.5	55
70	Solar and wind exergy potentials for Mars. Energy, 2016, 102, 550-558.	4.5	12
71	Martian Top of the Atmosphere 10–420 nm spectral irradiance database and forecast for solar cycle 24. Solar Energy, 2016, 134, 228-235.	2.9	5
72	Aerosol optical depth as observed by the Mars Science Laboratory REMS UV photodiodes. Icarus, 2016, 280, 234-248.	1.1	48

#	Article	IF	CITATIONS
73	Fluids during diagenesis and sulfate vein formation in sediments at Gale crater, Mars. Meteoritics and Planetary Science, 2016, 51, 2175-2202.	0.7	50
74	Human vision is determined based on information theory. Scientific Reports, 2016, 6, 36038.	1.6	17
75	UAVs as remote sensing platform in glaciology: Present applications and future prospects. Remote Sensing of Environment, 2016, 175, 196-204.	4.6	271
76	The first Martian year of cloud activity from Mars Science Laboratory (sol 0–800). Advances in Space Research, 2016, 57, 1223-1240.	1.2	20
77	LiDAR remote sensing of the cryosphere: Present applications and future prospects. Remote Sensing of Environment, 2016, 177, 125-143.	4.6	73
78	Habitability: A Review. Astrobiology, 2016, 16, 89-117.	1.5	246
79	A full martian year of line-of-sight extinction within Gale Crater, Mars as acquired by the MSL Navcam through sol 900. Icarus, 2016, 264, 102-108.	1.1	29
80	Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2015, 120, 495-514.	1.5	375
81	The EChO science case. Experimental Astronomy, 2015, 40, 329-391.	1.6	31
82	Liquid Water at Crater Gale, Mars. Journal of Astrobiology & Outreach, 2015, 03, .	0.1	1
83	Planetary Exploration; Mars on the Scope. Journal of Astrobiology & Outreach, 2015, 03, .	0.1	Ο
84	Evaluation of the Atmospheric Chemical Entropy Production of Mars. Entropy, 2015, 17, 5047-5062.	1.1	0
85	ChemCam: Chemostratigraphy by the First Mars Microprobe. Elements, 2015, 11, 33-38.	0.5	54
86	Images from Curiosity: A New Look at Mars. Elements, 2015, 11, 27-32.	0.5	13
87	Curiosity's Mission of Exploration at Gale Crater, Mars. Elements, 2015, 11, 19-26.	0.5	55
88	In Situ Compositional Measurements of Rocks and Soils with the Alpha Particle X-ray Spectrometer on NASA's Mars Rovers. Elements, 2015, 11, 39-44.	0.5	91
89	Determining Mineralogy on Mars with the CheMin X-Ray Diffractometer. Elements, 2015, 11, 45-50.	0.5	39
90	Volatile and Isotopic Imprints of Ancient Mars. Elements, 2015, 11, 51-56.	0.5	12

#	Article	IF	CITATIONS
91	Solar cell temperature on Mars. Solar Energy, 2015, 118, 74-79.	2.9	5
92	Observational evidence of a suppressed planetary boundary layer in northern Gale Crater, Mars as seen by the Navcam instrument onboard the Mars Science Laboratory rover. Icarus, 2015, 249, 129-142.	1.1	66
93	Atmospheric movies acquired at the Mars Science Laboratory landing site: Cloud morphology, frequency and significance to the Gale Crater water cycle and Phoenix mission results. Advances in Space Research, 2015, 55, 2217-2238.	1.2	28
94	Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the <i>Curiosity</i> rover investigations at Gale crater, Mars. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4245-4250.	3.3	172
95	Transient liquid water and water activity at Gale crater on Mars. Nature Geoscience, 2015, 8, 357-361.	5.4	277
96	Mars methane detection and variability at Gale crater. Science, 2015, 347, 415-417.	6.0	373
97	The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars. Science, 2015, 347, 412-414.	6.0	113
98	Gale crater and impact processes – Curiosity's first 364 Sols on Mars. Icarus, 2015, 249, 108-128.	1.1	37
99	Compositions of coarse and fine particles in martian soils at gale: A window into the production of soils. Icarus, 2015, 249, 22-42.	1.1	64
100	ChemCam passive reflectance spectroscopy of surface materials at the Curiosity landing site, Mars. Icarus, 2015, 249, 74-92.	1.1	70
101	The Fate of Freedom of a Space Exploration Mission Encountering Life and the Liberty of the "Encountered―Extra-Terrestrial Beings. Space and Society, 2015, , 127-137.	1.6	0
102	Mars Science Laboratory relative humidity observations: Initial results. Journal of Geophysical Research E: Planets, 2014, 119, 2132-2147.	1.5	75
103	Mid-infrared spectroscopy of Uranus from the Spitzer Infrared Spectrometer: 1. Determination of the mean temperature structure of the upper troposphere and stratosphere. Icarus, 2014, 243, 494-513.	1.1	56
104	Mid-infrared spectroscopy of Uranus from the Spitzer infrared spectrometer: 2. Determination of the mean composition of the upper troposphere and stratosphere. Icarus, 2014, 243, 471-493.	1.1	53
105	Comparison of Martian surface ionizing radiation measurements from MSLâ€RAD with Badhwarâ€O'Neill 2011/HZETRN model calculations. Journal of Geophysical Research E: Planets, 2014, 119, 1311-1321.	1.5	42
106	Diurnal variations of energetic particle radiation at the surface of Mars as observed by the Mars Science Laboratory Radiation Assessment Detector. Journal of Geophysical Research E: Planets, 2014, 119, 1345-1358.	1.5	44
107	Correcting for variable laser-target distances of laser-induced breakdown spectroscopy measurements with ChemCam using emission lines of Martian dust spectra. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2014, 96, 51-60.	1.5	45
108	Curiosity's rover environmental monitoring station: Overview of the first 100 sols. Journal of Geophysical Research E: Planets, 2014, 119, 1680-1688.	1.5	112

#	Article	IF	CITATIONS
109	Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1245267.	6.0	323
110	A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1242777.	6.0	687
111	Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1243480.	6.0	508
112	Mars' Surface Radiation Environment Measured with the Mars Science Laboratory's Curiosity Rover. Science, 2014, 343, 1244797.	6.0	475
113	In Situ Radiometric and Exposure Age Dating of the Martian Surface. Science, 2014, 343, 1247166.	6.0	224
114	Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1244734.	6.0	246
115	Local variations of bulk hydrogen and chlorineâ€equivalent neutron absorption content measured at the contact between the Sheepbed and Gillespie Lake units in Yellowknife Bay, Gale Crater, using the DAN instrument onboard Curiosity. Journal of Geophysical Research E: Planets, 2014, 119, 1259-1275.	1.5	33
116	Preliminary interpretation of the REMS pressure data from the first 100 sols of the MSL mission. Journal of Geophysical Research E: Planets, 2014, 119, 440-453.	1.5	80
117	Observations and preliminary science results from the first 100 sols of MSL Rover Environmental Monitoring Station ground temperature sensor measurements at Gale Crater. Journal of Geophysical Research E: Planets, 2014, 119, 745-770.	1.5	67
118	Pressure observations by the Curiosity rover: Initial results. Journal of Geophysical Research E: Planets, 2014, 119, 82-92.	1.5	84
119	FRISER-IRMIX Database: A Web-Based Support System with Implications in Planetary Mineralogical Studies, Ground Temperature Measurements and Astrobiology. Lecture Notes in Earth System Sciences, 2014, , 783-786.	0.5	0
120	X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater. Science, 2013, 341, 1238932.	6.0	327
121	Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow. Science, 2013, 341, 1239505.	6.0	280
122	Abundance and Isotopic Composition of Gases in the Martian Atmosphere from the Curiosity Rover. Science, 2013, 341, 263-266.	6.0	327
123	Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover. Science, 2013, 341, 1238937.	6.0	367
124	lsotope Ratios of H, C, and O in CO ₂ and H ₂ O of the Martian Atmosphere. Science, 2013, 341, 260-263.	6.0	241
125	A Mathematic Approach to Nitrogen Fixation Through Earth History. Thirty Years of Astronomical Discovery With UKIRT, 2013, , 23-31.	0.3	2
126	The Petrochemistry of Jake_M: A Martian Mugearite. Science, 2013, 341, 1239463.	6.0	134

#	Article	lF	CITATIONS
127	Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars. Science, 2013, 341, 1238670.	6.0	215
128	Low Upper Limit to Methane Abundance on Mars. Science, 2013, 342, 355-357.	6.0	103
129	Atomic oxygen in the mesosphere and lower thermosphere derived from SABER: Algorithm theoretical basis and measurement uncertainty. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5724-5735.	1.2	101
130	Implication of Impacts in the Young Earth Sun Paradox and the Evolution of Earth's Atmosphere. Thirty Years of Astronomical Discovery With UKIRT, 2013, , 85-97.	0.3	5
131	SNC Meteorites: Atmosphere Implantation Ages and the Climatic Evolution of Mars. Thirty Years of Astronomical Discovery With UKIRT, 2013, , 165-172.	0.3	2
132	REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover. Space Science Reviews, 2012, 170, 583-640.	3.7	247
133	Life on Mars. New Scientist, 2012, 215, 28.	0.0	1
134	EChO. Experimental Astronomy, 2012, 34, 311-353.	1.6	98
135	Uranus Pathfinder: exploring the origins and evolution of Ice Giant planets. Experimental Astronomy, 2012, 33, 753-791.	1.6	44
136	Clues on the importance of comets in the origin and evolution of the atmospheres of Titan and Earth. Planetary and Space Science, 2012, 60, 3-9.	0.9	19
137	The science of EChO. Proceedings of the International Astronomical Union, 2010, 6, 359-370.	0.0	5
138	Observations of infrared radiative cooling in the thermosphere on daily to multiyear timescales from the TIMED/SABER instrument. Journal of Geophysical Research, 2010, 115, .	3.3	102
139	Special issue on planetary atmospheres. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109, 881.	1.1	4
140	Solarâ€ŧerrestrial coupling evidenced by periodic behavior in geomagnetic indexes and the infrared energy budget of the thermosphere. Geophysical Research Letters, 2008, 35, .	1.5	86
141	Decreases in atomic hydrogen over the summer pole: Evidence for dehydration from polar mesospheric clouds?. Geophysical Research Letters, 2008, 35, .	1.5	19
142	Assessment of the quality of the Version 1.07 temperatureâ€versusâ€pressure profiles of the middle atmosphere from TIMED/SABER. Journal of Geophysical Research, 2008, 113, .	3.3	369
143	Satellite observations of high nighttime ozone at the equatorial mesopause. Journal of Geophysical Research, 2008, 113, .	3.3	46
144	Comparison of nighttime nitric oxide 5.3 <i>μ</i> m emissions in the thermosphere measured by MIPAS and SABER. Journal of Geophysical Research, 2007, 112, .	3.3	17

#	Article	IF	CITATIONS
145	Correction to "Energy transport in the thermosphere during the solar storms of April 2002― Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	12
146	Evidence for a solar cycle influence on the infrared energy budget and radiative cooling of the thermosphere. Journal of Geophysical Research, 2007, 112, .	3.3	34
147	Sounding of the Atmosphere using Broadband Emission Radiometry observations of daytime mesospheric O ₂ (¹ Δ) 1.27 <i>μ</i> m emission and derivation of ozone, atomic oxygen, and solar and chemical energy deposition rates. Journal of Geophysical Research, 2007, 112, .	3.3	66
148	Vegetation Signature in the Observed Globally Integrated Spectrum of Earth Considering Simultaneous Cloud Data: Applications for Extrasolar Planets. Astrophysical Journal, 2006, 651, 544-552.	1.6	109
149	Detection of sporadic impact flashes on the Moon: Implications for the luminous efficiency of hypervelocity impacts and derived terrestrial impact rates. Icarus, 2006, 184, 319-326.	1.1	74
150	An inter-comparison of far-infrared line-by-line radiative transfer models. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 90, 323-341.	1.1	29
151	Energy transport in the thermosphere during the solar storms of April 2002. Journal of Geophysical Research, 2005, 110, .	3.3	105
152	Variability of the mesospheric nightglow sodium D2/D1ratio. Journal of Geophysical Research, 2005, 110, .	3.3	31
153	Thermospheric infrared radiance response to the April 2002 geomagnetic storm from SABER infrared and GUVI ultraviolet limb data. , 2004, , .		6
154	Observations of the O(3P) fine structure line at 63 μm in the upper mesosphere and lower thermosphere. Journal of Geophysical Research, 2004, 109, .	3.3	17
155	Satellite observations of daytime and nighttime ozone in the mesosphere and lower thermosphere. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	51
156	The natural thermostat of nitric oxide emission at 5.3 μm in the thermosphere observed during the solar storms of April 2002. Geophysical Research Letters, 2003, 30, .	1.5	123
157	A blind test retrieval experiment for infrared limb emission spectrometry. Journal of Geophysical Research, 2003, 108, .	3.3	57
158	Non-LTE studies for the analysis of MIPAS/ENVISAT data. , 2002, , .		2
159	New non-LTE retrieval method for atmospheric parameters from MIPAS/ENVISAT emission spectra at 5.3 μ m. , 2002, 4539, 396.		2
160	Optimized spectral microwindows for data analysis of the Michelson Interferometer for Passive Atmospheric Sounding on the Environmental Satellite. Applied Optics, 2000, 39, 5531.	2.1	45
161	Modelling of non-LTE limb spectra of i.r. ozone bands for the MIPAS space experiment. Journal of Quantitative Spectroscopy and Radiative Transfer, 1998, 59, 405-422.	1.1	28
162	Non-local thermodynamic equilibrium limb radiances for the mipas instrument on Envisat-1. Journal of Quantitative Spectroscopy and Radiative Transfer, 1998, 59, 377-403.	1.1	17

#	Article	IF	CITATIONS
163	Modelling of the non-LTE populations of thenitricacid and methane vibrational states in themiddleatmosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 1998, 60, 1631-1647.	0.6	9
164	Transient liquid water and water activity at Gale crater on Mars. , 0, .		2
165	Self-Assembled Structures Formed in CO ₂ -Enriched Atmospheres: A Case-Study for Martian Biomimetic Forms. Astrobiology, 0, , .	1.5	0
166	Active ground patterns near Mars' equator in the Glen Torridon region of Gale Crater. Journal of Geophysical Research E: Planets, 0, , .	1.5	3