Susanne Petri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7077449/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Caregivers' divergent perspectives on patients' well-being and attitudes towards hastened death in Germany, Poland and Sweden. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2022, 23, 252-262.	1.1	2
2	Safety and Effectiveness of Long-term Intravenous Administration of Edaravone for Treatment of Patients With Amyotrophic Lateral Sclerosis. JAMA Neurology, 2022, 79, 121.	4.5	78
3	Major research advances in amyotrophic lateral sclerosis in 2021. Lancet Neurology, The, 2022, 21, 14-15.	4.9	5
4	An Automated Tongue Tracker for Quantifying Bulbar Function in ALS. Frontiers in Neurology, 2022, 13, 838191.	1.1	7
5	Pain-Related Coping Behavior in ALS: The Interplay between Maladaptive Coping, the Patient's Affective State and Pain. Journal of Clinical Medicine, 2022, 11, 944.	1.0	1
6	Validity and reliability of the German multidimensional fatigue inventory in spinal muscular atrophy. Annals of Clinical and Translational Neurology, 2022, 9, 351-362.	1.7	5
7	Clinical trials in pediatric ALS: a TRICALS feasibility study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2022, 23, 481-488.	1.1	3
8	Alteration of Mitochondrial Integrity as Upstream Event in the Pathophysiology of SOD1-ALS. Cells, 2022, 11, 1246.	1.8	11
9	Heterozygous DHTKD1 Variants in Two European Cohorts of Amyotrophic Lateral Sclerosis Patients. Genes, 2022, 13, 84.	1.0	6
10	A SUMO4 initiator codon variant in amyotrophic lateral sclerosis reduces SUMO4 expression and alters stress granule dynamics. Journal of Neurology, 2022, 269, 4863-4871.	1.8	3
11	An observational cohort study on impact, dimensions and outcome of perceived fatigue in adult 5q-spinal muscular atrophy patients receiving nusinersen treatment. Journal of Neurology, 2021, 268, 950-962.	1.8	16
12	ALS and fertility: does ALS affect number of children patients have?. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2021, 22, 94-100.	1.1	0
13	Treatment satisfaction in 5q-spinal muscular atrophy under nusinersen therapy. Therapeutic Advances in Neurological Disorders, 2021, 14, 175628642199890.	1.5	14
14	Clinically Applicable Quantitative Magnetic Resonance Morphologic Measurements of Grey Matter Changes in the Human Brain. Brain Sciences, 2021, 11, 55.	1.1	3
15	Longitudinal clinical and neuroanatomical correlates of memory impairment in motor neuron disease. NeuroImage: Clinical, 2021, 29, 102545.	1.4	13
16	Executive function is inversely correlated with physical function: the cognitive profile of adult Spinal Muscular Atrophy (SMA). Orphanet Journal of Rare Diseases, 2021, 16, 10.	1.2	13
17	Cerebrospinal Fluid Parameters in Antisense Oligonucleotide-Treated Adult 5q-Spinal Muscular Atrophy Patients. Brain Sciences, 2021, 11, 296.	1.1	12
18	Chitotriosidase as biomarker for early stage amyotrophic lateral sclerosis: a multicenter study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2021, 22, 276-286.	1.1	14

#	Article	IF	CITATIONS
19	Cardiovascular comorbidities in amyotrophic lateral sclerosis. Journal of the Neurological Sciences, 2021, 421, 117292.	0.3	10
20	A Nation-Wide, Multi-Center Study on the Quality of Life of ALS Patients in Germany. Brain Sciences, 2021, 11, 372.	1.1	15
21	Nusinersen Wearing-Off in Adult 5q-Spinal Muscular Atrophy Patients. Brain Sciences, 2021, 11, 367.	1.1	6
22	Serum creatine kinase and creatinine in adult spinal muscular atrophy under nusinersen treatment. Annals of Clinical and Translational Neurology, 2021, 8, 1049-1063.	1.7	29
23	Reconditioning the Neurogenic Niche of Adult Non-human Primates by Antisense Oligonucleotide-Mediated Attenuation of TGFβ Signaling. Neurotherapeutics, 2021, 18, 1963-1979.	2.1	4
24	Impairment of mitochondrial oxidative phosphorylation in skin fibroblasts of SALS and FALS patients is rescued by in vitro treatment with ROS scavengers. Experimental Neurology, 2021, 339, 113620.	2.0	16
25	Treatment expectations and perception of therapy in adult patients with spinal muscular atrophy receiving nusinersen. European Journal of Neurology, 2021, 28, 2582-2595.	1.7	16
26	Brain activity is contingent on neuropsychological function in a functional magnetic resonance imaging study of verbal working memory in amyotrophic lateral sclerosis. European Journal of Neurology, 2021, 28, 3051-3060.	1.7	2
27	Informal Caregiving in Amyotrophic Lateral Sclerosis (ALS): A High Caregiver Burden and Drastic Consequences on Caregivers' Lives. Brain Sciences, 2021, 11, 748.	1.1	30
28	Increased chitotriosidase 1 concentration following nusinersen treatment in spinal muscular atrophy. Orphanet Journal of Rare Diseases, 2021, 16, 330.	1.2	12
29	Motor neuron disease beginning with frontotemporal dementia: clinical features and progression. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2021, 22, 508-516.	1.1	7
30	FUS Is Not Mislocalized in Spinal Motor Neurons Derived From Human Induced Pluripotent Stem Cells of Main Non-FUS ALS Subtypes. Journal of Neuropathology and Experimental Neurology, 2021, 80, 720-722.	0.9	1
31	Characteristics of pain and the burden it causes in patients with amyotrophic lateral sclerosis $\hat{a} \in$ " a longitudinal study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2021, , 1-8.	1.1	5
32	A Multi-Center Cohort Study on Characteristics of Pain, Its Impact and Pharmacotherapeutic Management in Patients with ALS. Journal of Clinical Medicine, 2021, 10, 4552.	1.0	4
33	Safety and efficacy of oral levosimendan in people with amyotrophic lateral sclerosis (the REFALS) Tj ETQq1 1 C 821-831.).784314 rg 4.9	gBT /Overlock 9
34	Cognitive Performance of Patients with Adult 5q-Spinal Muscular Atrophy and with Amyotrophic Lateral Sclerosis. Brain Sciences, 2021, 11, 8.	1.1	10
35	Delayed Diagnosis and Diagnostic Pathway of ALS Patients in Portugal: Where Can We Improve?. Frontiers in Neurology, 2021, 12, 761355.	1.1	12
36	Peripheral neuropathy in ALS: phenotype association. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 1133-1134.	0.9	3

#	Article	IF	CITATIONS
37	A selectable all-in-one CRISPR prime editing piggyBac transposon allows for highly efficient gene editing in human cell lines. Scientific Reports, 2021, 11, 22154.	1.6	19
38	Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nature Genetics, 2021, 53, 1636-1648.	9.4	223
39	Neurofilament light chain in serum of adolescent and adult SMA patients under treatment with nusinersen. Journal of Neurology, 2020, 267, 36-44.	1.8	47
40	Effect of High aloric Nutrition on Survival in Amyotrophic Lateral Sclerosis. Annals of Neurology, 2020, 87, 206-216.	2.8	105
41	7T MR neurographyâ€ultrasound fusion for peripheral nerve imaging. Muscle and Nerve, 2020, 61, 521-526.	1.0	6
42	Cell culture media notably influence properties of human mesenchymal stroma/stem-like cells from different tissues. Cytotherapy, 2020, 22, 653-668.	0.3	15
43	Textural markers of ultrasonographic nerve alterations in amyotro phic lateral sclerosis. Muscle and Nerve, 2020, 62, 601-610.	1.0	5
44	Effect of high-caloric nutrition on serum neurofilament light chain levels in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 1007-1009.	0.9	36
45	A Computational Study of Executive Dysfunction in Amyotrophic Lateral Sclerosis. Journal of Clinical Medicine, 2020, 9, 2605.	1.0	6
46	Emotional Lability at Disease Onset Is an Independent Prognostic Factor of Faster Disease Progression in Amyotrophic Lateral Sclerosis. , 2020, 11, 1021.		5
47	Treatment expectations and patient-reported outcomes of nusinersen therapy in adult spinal muscular atrophy. Journal of Neurology, 2020, 267, 2398-2407.	1.8	36
48	Costs of illness in amyotrophic lateral sclerosis (ALS): a cross-sectional survey in Germany. Orphanet Journal of Rare Diseases, 2020, 15, 149.	1.2	22
49	Spreading in ALS: The relative impact of upper and lower motor neuron involvement. Annals of Clinical and Translational Neurology, 2020, 7, 1181-1192.	1.7	34
50	Family history of neurodegenerative disorders in patients with amyotrophic lateral sclerosis: population-based case–control study. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 671-672.	0.9	3
51	Nusinersen in adults with 5q spinal muscular atrophy: a non-interventional, multicentre, observational cohort study. Lancet Neurology, The, 2020, 19, 317-325.	4.9	196
52	The upper cervical spinal cord in ALS assessed by cross-sectional and longitudinal 3T MRI. Scientific Reports, 2020, 10, 1783.	1.6	7
53	Knocking out C9ORF72 Exacerbates Axonal Trafficking Defects Associated with Hexanucleotide Repeat Expansion and Reduces Levels of Heat Shock Proteins. Stem Cell Reports, 2020, 14, 390-405.	2.3	48
54	Sonographic and 3T-MRI-based evaluation of the tongue in ALS. NeuroImage: Clinical, 2020, 26, 102233.	1.4	11

#	Article	IF	CITATIONS
55	Impact of comorbidities and co-medication on disease onset and progression in a large German ALS patient group. Journal of Neurology, 2020, 267, 2130-2141.	1.8	23
56	Symptomatic pharmacotherapy in ALS: data analysis from a platform-based medication management programme. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 783-785.	0.9	15
57	Dyspnea as a Fatigue-Promoting Factor in ALS and the Role of Objective Indicators of Respiratory Impairment. Journal of Pain and Symptom Management, 2020, 60, 430-438.e1.	0.6	8
58	SPG7 mutations in amyotrophic lateral sclerosis: a genetic link to hereditary spastic paraplegia. Journal of Neurology, 2020, 267, 2732-2743.	1.8	14
59	IncobotulinumtoxinA for hypersalivation in patients with amyotrophic lateral sclerosis: an open-label single-centre study. Journal of Neural Transmission, 2019, 126, 1341-1345.	1.4	6
60	Routine Cerebrospinal Fluid Cytology Reveals Unique Inclusions in Macrophages During Treatment With Nusinersen. Frontiers in Neurology, 2019, 10, 735.	1.1	14
61	Reply: Adult-onset distal spinal muscular atrophy: a new phenotype associated with KIF5A mutations. Brain, 2019, 142, e67-e67.	3.7	1
62	Neurochemical markers in CSF of adolescent and adult SMA patients undergoing nusinersen treatment. Therapeutic Advances in Neurological Disorders, 2019, 12, 175628641984605.	1.5	41
63	The Dyspnea-ALS-Scale (DALS-15) optimizes individual treatment in patients with amyotrophic lateral sclerosis (ALS) suffering from dyspnea. Health and Quality of Life Outcomes, 2019, 17, 95.	1.0	4
64	Altered calcium dynamics and glutamate receptor properties in iPSC-derived motor neurons from ALS patients with C9orf72, FUS, SOD1 or TDP43 mutations. Human Molecular Genetics, 2019, 28, 2835-2850.	1.4	39
65	Influence of Environment and Lifestyle on Incidence and Progress of Amyotrophic Lateral Sclerosis in A German ALS Population. , 2019, 10, 205.		18
66	Isoformâ€selective as opposed to complete depletion of fibroblast growth factor 2 (FGFâ€2) has no major impact on survival and gene expression in SOD1 G93A amyotrophic lateral sclerosis mice. European Journal of Neuroscience, 2019, 50, 3028-3045.	1.2	1
67	Prognostic factors in ALS: a comparison between Germany and China. Journal of Neurology, 2019, 266, 1516-1525.	1.8	46
68	Toward <i>in vivo</i> determination of peripheral nervous system immune activity in amyotrophic lateral sclerosis. Muscle and Nerve, 2019, 59, 567-576.	1.0	21
69	Analysis of the therapeutic potential of different administration routes and frequencies of human mesenchymal stromal cells in the SOD1 ^{G93A} mouse model of amyotrophic lateral sclerosis. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 649-663.	1.3	10
70	Transcriptome-wide Profiling of Cerebral Cavernous Malformations Patients Reveal Important Long noncoding RNA molecular signatures. Scientific Reports, 2019, 9, 18203.	1.6	14
71	Expression of the axonâ€guidance protein receptor Neuropilin 1 is increased in the spinal cord and decreased in muscle of a mouse model of amyotrophic lateral sclerosis. European Journal of Neuroscience, 2019, 49, 1529-1543.	1.2	15
72	Characterizing the multiple roles of FGFâ€2 in SOD1 ^{G93A} ALS mice in vivo and in vitro. Journal of Cellular Physiology, 2019, 234, 7395-7410.	2.0	9

#	Article	IF	CITATIONS
73	Hot-spot KIF5A mutations cause familial ALS. Brain, 2018, 141, 688-697.	3.7	167
74	Comprehensive analysis of the mutation spectrum in 301 German ALS families. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 817-827.	0.9	80
75	Provision of assistive technology devices among people with ALS in Germany: a platform-case management approach. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2018, 19, 342-350.	1.1	33
76	Percutaneous endoscopic gastrostomy with and without jejunal extension in patients with amyotrophic lateral sclerosis. European Journal of Gastroenterology and Hepatology, 2018, 30, 257-262.	0.8	13
77	Impaired DNA damage response signaling by FUS-NLS mutations leads to neurodegeneration and FUS aggregate formation. Nature Communications, 2018, 9, 335.	5.8	217
78	Differential involvement of forearm muscles in ALS does not relate to sonographic structural nerve alterations. Clinical Neurophysiology, 2018, 129, 1438-1443.	0.7	9
79	Prognosis for patients with amyotrophic lateral sclerosis: development and validation of a personalised prediction model. Lancet Neurology, The, 2018, 17, 423-433.	4.9	342
80	Peripheral nerve atrophy together with higher cerebrospinal fluid progranulin indicate axonal damage in amyotrophic lateral sclerosis. Muscle and Nerve, 2018, 57, 273-278.	1.0	17
81	Lack of an association between attention-deficit/hyperactivity disorder (ADHD) and amyotrophic lateral sclerosis (ALS). Journal of the Neurological Sciences, 2018, 385, 7-11.	0.3	2
82	Multicenter evaluation of neurofilaments in early symptom onset amyotrophic lateral sclerosis. Neurology, 2018, 90, e22-e30.	1.5	148
83	Significance of CSF NfL and tau in ALS. Journal of Neurology, 2018, 265, 2633-2645.	1.8	45
84	Association between attention-deficit/hyperactivity disorder (ADHD) and amyotrophic lateral sclerosis (ALS). Journal of the Neurological Sciences, 2018, 391, 152.	0.3	0
85	Quantitative Susceptibility MRI to Detect Brain Iron in Amyotrophic Lateral Sclerosis. Radiology, 2018, 289, 195-203.	3.6	61
86	Dysregulation of a novel miR-1825/TBCB/TUBA4A pathway in sporadic and familial ALS. Cellular and Molecular Life Sciences, 2018, 75, 4301-4319.	2.4	34
87	Therapeutic decisions in ALS patients: cross-cultural differences and clinical implications. Journal of Neurology, 2018, 265, 1600-1606.	1.8	34
88	Global Hippocampal Volume Reductions and Local CA1 Shape Deformations in Amyotrophic Lateral Sclerosis. Frontiers in Neurology, 2018, 9, 565.	1.1	19
89	Dyspnea in Amyotrophic Lateral Sclerosis: Rasch-Based Development and Validation of a Patient-Reported Outcome (DALS-15). Journal of Pain and Symptom Management, 2018, 56, 736-745.e2.	0.6	14
90	Implementing Motor Unit Number Index (MUNIX) in a large clinical trial: Real world experience from 27 centres. Clinical Neurophysiology, 2018, 129, 1756-1762.	0.7	49

#	Article	IF	CITATIONS
91	Safety and efficacy of rasagiline as an add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: a randomised, double-blind, parallel-group, placebo-controlled, phase 2 trial. Lancet Neurology, The, 2018, 17, 681-688.	4.9	51
92	Intraspinal administration of human spinal cord-derived neural progenitor cells in the <i>G93A-SOD1</i> mouse model of ALS delays symptom progression, prolongs survival and increases expression of endogenous neurotrophic factors. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 751-764.	1.3	19
93	Widespread temporo-occipital lobe dysfunction in amyotrophic lateral sclerosis. Scientific Reports, 2017, 7, 40252.	1.6	34
94	Safety and efficacy of ozanezumab in patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurology, The, 2017, 16, 208-216.	4.9	62
95	Attenuated error-related potentials in amyotrophic lateral sclerosis with executive dysfunctions. Clinical Neurophysiology, 2017, 128, 1496-1503.	0.7	7
96	FIG4 variants in central European patients with amyotrophic lateral sclerosis: a whole-exome and targeted sequencing study. European Journal of Human Genetics, 2017, 25, 324-331.	1.4	39
97	Plekhg5-regulated autophagy of synaptic vesicles reveals a pathogenic mechanism in motoneuron disease. Nature Communications, 2017, 8, 678.	5.8	59
98	July 2017 ENCALS statement on edaravone. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2017, 18, 471-474.	1.1	41
99	HDAC6 inhibition reverses axonal transport defects in motor neurons derived from FUS-ALS patients. Nature Communications, 2017, 8, 861.	5.8	275
100	International Survey of ALS Experts about Critical Questions for Assessing Patients with ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2017, 18, 505-510.	1.1	17
101	Sporadic late-onset nemaline myopathy: clinico-pathological characteristics and review of 76 cases. Orphanet Journal of Rare Diseases, 2017, 12, 86.	1.2	77
102	Diagnostic and prognostic significance of neurofilament light chain NF-L, but not progranulin and S100B, in the course of amyotrophic lateral sclerosis: Data from the German MND-net. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2017, 18, 112-119.	1.1	63
103	The concept and diagnostic criteria of primary lateral sclerosis. Acta Neurologica Scandinavica, 2017, 136, 204-211.	1.0	32
104	The TGF-β System As a Potential Pathogenic Player in Disease Modulation of Amyotrophic Lateral Sclerosis. Frontiers in Neurology, 2017, 8, 669.	1.1	42
105	4-Aminopyridine Induced Activity Rescues Hypoexcitable Motor Neurons from Amyotrophic Lateral Sclerosis Patient-Derived Induced Pluripotent Stem Cells. Stem Cells, 2016, 34, 1563-1575.	1.4	109
106	Quantifying disease progression in amyotrophic lateral sclerosis using peripheral nerve sonography. Muscle and Nerve, 2016, 54, 391-397.	1.0	40
107	Improved bi-allelic modification of a transcriptionally silent locus in patient-derived iPSC by Cas9 nickase. Scientific Reports, 2016, 6, 38198.	1.6	29
108	Age and education-matched cut-off scores for the revised German/Swiss-German version of ECAS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 374-376.	1.1	35

#	Article	IF	CITATIONS
109	Multicenter validation of CSF neurofilaments as diagnostic biomarkers for ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 404-413.	1.1	84
110	Interhemispheric connectivity in amyotrophic lateral sclerosis: A near-infrared spectroscopy and diffusion tensor imaging study. NeuroImage: Clinical, 2016, 12, 666-672.	1.4	11
111	Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nature Genetics, 2016, 48, 1043-1048.	9.4	494
112	Neural correlates of cognitive set shifting in amyotrophic lateral sclerosis. Clinical Neurophysiology, 2016, 127, 3537-3545.	0.7	16
113	Impaired set-shifting in amyotrophic lateral sclerosis: An event-related potential study of executive function Neuropsychology, 2016, 30, 120-134.	1.0	33
114	Structural and diffusion imaging versus clinical assessment to monitor amyotrophic lateral sclerosis. NeuroImage: Clinical, 2016, 11, 408-414.	1.4	51
115	Diagnostic support for selected neuromuscular diseases using answer-pattern recognition and data mining techniques: a proof of concept multicenter prospective trial. BMC Medical Informatics and Decision Making, 2016, 16, 31.	1.5	15
116	Lower motor neuron involvement in ALS assessed by motor unit number index (MUNIX): Long-term changes and reproducibility. Clinical Neurophysiology, 2016, 127, 1984-1988.	0.7	45
117	The Axon Guidance Protein Semaphorin 3A Is Increased in the Motor Cortex of Patients With Amyotrophic Lateral Sclerosis. Journal of Neuropathology and Experimental Neurology, 2016, 75, 326-333.	0.9	29
118	Clinical features and differential diagnosis of flail arm syndrome. Journal of Neurology, 2016, 263, 390-395.	1.8	32
119	Executive Dysfunctions and Event-Related Brain Potentials in Patients with Amyotrophic Lateral Sclerosis. Frontiers in Aging Neuroscience, 2015, 7, 225.	1.7	17
120	The Potential Role of Motor Unit Number Estimation as an Additional Diagnostic and Prognostic Value in Canine Neurology. Frontiers in Veterinary Science, 2015, 2, 53.	0.9	2
121	Percutaneous endoscopic gastrostomy in amyotrophic lateral sclerosis: a prospective observational study. Journal of Neurology, 2015, 262, 849-858.	1.8	80
122	The Edinburgh Cognitive and Behavioural Amyotrophic Lateral Sclerosis Screen: A cross-sectional comparison of established screening tools in a German-Swiss population. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2015, 16, 16-23.	1.1	109
123	Amyotrophic lateral sclerosis affects cortical and subcortical activity underlying motor inhibition and action monitoring. Human Brain Mapping, 2015, 36, 2878-2889.	1.9	27
124	Basal ganglia pathology in ALS is associated with neuropsychological deficits. Neurology, 2015, 85, 1301-1309.	1.5	96
125	Interaction of physical function, quality of life and depression in Amyotrophic lateral sclerosis: characterization of a large patient cohort. BMC Neurology, 2015, 15, 84.	0.8	49
126	Peripheral nerve ultrasound in amyotrophic lateral sclerosis phenotypes. Muscle and Nerve, 2015, 51, 669-675.	1.0	55

#	Article	IF	CITATIONS
127	Information needs and information-seeking preferences of ALS patients and their carers. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2014, 15, 505-512.	1.1	28
128	Central white matter degeneration in bulbar- and limb-onset amyotrophic lateral sclerosis. Journal of Neurology, 2014, 261, 1961-1967.	1.8	30
129	Hippocampal degeneration in patients with amyotrophic lateral sclerosis. Neurobiology of Aging, 2014, 35, 2639-2645.	1.5	62
130	Structural and functional hallmarks of amyotrophic lateral sclerosis progression in motor- and memory-related brain regions. NeuroImage: Clinical, 2014, 5, 277-290.	1.4	34
131	Validation of the German version of the extended ALS functional rating scale as a patient-reported outcome measure. Journal of Neurology, 2013, 260, 2242-2255.	1.8	44
132	Differential Sirtuin Expression Patterns in Amyotrophic Lateral Sclerosis (ALS) Postmortem Tissue: Neuroprotective or Neurotoxic Properties of Sirtuins in ALS?. Neurodegenerative Diseases, 2013, 11, 141-152.	0.8	51
133	Therapeutic Potential of N-Acetyl-Glucagon-Like Peptide-1 in Primary Motor Neuron Cultures Derived From Non-Transgenic and SOD1-G93A ALS Mice. Cellular and Molecular Neurobiology, 2013, 33, 347-357.	1.7	24
134	Speech therapy and communication device: Impact on quality of life and mood in patients with amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 20-25.	1.1	54
135	Barriers to novel therapeutics in amyotrophic lateral sclerosis. Neurodegenerative Disease Management, 2013, 3, 525-537.	1.2	0
136	Therapeutic Potential of Mesenchymal Stromal Cells and MSC Conditioned Medium in Amyotrophic Lateral Sclerosis (ALS) - In Vitro Evidence from Primary Motor Neuron Cultures, NSC-34 Cells, Astrocytes and Microglia. PLoS ONE, 2013, 8, e72926.	1.1	60
137	Magnetic Resonance Imaging in Amyotrophic Lateral Sclerosis. Neurology Research International, 2012, 2012, 1-9.	0.5	15
138	Hyperexcitability and amyotrophic lateral sclerosis. Neurology, 2012, 78, 1544-1545.	1.5	21
139	Nrf2/ARE Signaling Pathway: Key Mediator in Oxidative Stress and Potential Therapeutic Target in ALS. Neurology Research International, 2012, 2012, 1-7.	0.5	156
140	Decreased mRNA Expression of PGC-1α and PGC-1α-Regulated Factors in the SOD1 ^{G93A} ALS Mouse Model and in Human Sporadic ALS. Journal of Neuropathology and Experimental Neurology, 2012, 71, 1064-1074.	0.9	82
141	Intraspinal Injection of Human Umbilical Cord Blood-Derived Cells Is Neuroprotective in a Transgenic Mouse Model of Amyotrophic Lateral Sclerosis. Neurodegenerative Diseases, 2012, 9, 107-120.	0.8	43
142	Changes in motor axon K+ conductance in ALS. Primary or secondary to motor neuron degeneration?. Clinical Neurophysiology, 2012, 123, 2326-2327.	0.7	0
143	Intracerebroventricular Injection of Encapsulated Human Mesenchymal Cells Producing Glucagon-Like Peptide 1 Prolongs Survival in a Mouse Model of ALS. PLoS ONE, 2012, 7, e36857.	1.1	54
144	Prolonged survival and milder impairment of motor function in the SOD1 ALS mouse model devoid of fibroblast growth factor 2. Neurobiology of Disease, 2012, 47, 248-257.	2.1	32

#	Article	IF	CITATIONS
145	EFNS guidelines on the Clinical Management of Amyotrophic Lateral Sclerosis (MALS) – revised report of an EFNS task force. European Journal of Neurology, 2012, 19, 360-375.	1.7	860
146	Cortical Processing of Swallowing in ALS Patients with Progressive Dysphagia – A Magnetoencephalographic Study. PLoS ONE, 2011, 6, e19987.	1.1	41
147	Complement upregulation and activation on motor neurons and neuromuscular junction in the SOD1 G93A mouse model of familial amyotrophic lateral sclerosis. Journal of Neuroimmunology, 2011, 235, 104-109.	1.1	53
148	Neuroprotective effect of Nrf2/ARE activators, CDDO ethylamide and CDDO trifluoroethylamide, in a mouse model of amyotrophic lateral sclerosis. Free Radical Biology and Medicine, 2011, 51, 88-96.	1.3	173
149	Intramedullary spinal cord implantation of human CD34 ⁺ umbilical cord-derived cells in ALS. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2011, 12, 325-330.	2.3	12
150	Patterns of cortical activity differ in ALS patients with limb and/or bulbar involvement depending on motor tasks. Journal of Neurology, 2011, 258, 804-810.	1.8	27
151	Onset and spreading patterns of upper and lower motor neuron symptoms in amyotrophic lateral sclerosis. Muscle and Nerve, 2011, 43, 636-642.	1.0	66
152	Value of quantitative analysis of routine clinical MRI sequences in ALS. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2011, 12, 406-413.	2.3	15
153	Deregulation of TDP-43 in amyotrophic lateral sclerosis triggers nuclear factor κB–mediated pathogenic pathways. Journal of Experimental Medicine, 2011, 208, 2429-2447.	4.2	287
154	Differential Histone Deacetylase mRNA Expression Patterns in Amyotrophic Lateral Sclerosis. Journal of Neuropathology and Experimental Neurology, 2010, 69, 573-581.	0.9	78
155	Oxidative stress in skeletal muscle stimulates early expression of Rad in a mouse model of amyotrophic lateral sclerosis. Free Radical Biology and Medicine, 2010, 48, 915-923.	1.3	57
156	Significance of behavioural tests in a transgenic mouse model of amyotrophic lateral sclerosis (ALS). Behavioural Brain Research, 2010, 213, 82-87.	1.2	83
157	Guidelines for preclinical animal research in ALS/MND: A consensus meeting. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2010, 11, 38-45.	2.3	293
158	Botulinum Toxin as Preventive Treatment for Migraine: A Randomized Double-Blind Study. European Neurology, 2009, 62, 204-211.	0.6	35
159	Preserved expression of fibroblast growth factor (FGF)-2 and FGF receptor 1 in brain and spinal cord of amyotrophic lateral sclerosis patients. Histochemistry and Cell Biology, 2009, 131, 509-519.	0.8	16
160	ALSFRS-R score and its ratio: A useful predictor for ALS-progression. Journal of the Neurological Sciences, 2008, 275, 69-73.	0.3	208
161	Nuclear Erythroid 2-Related Factor 2-Antioxidative Response Element Signaling Pathway in Motor Cortex and Spinal Cord in Amyotrophic Lateral Sclerosis. Journal of Neuropathology and Experimental Neurology, 2008, 67, 1055-1062.	0.9	130
162	The lipophilic metal chelators DP-109 and DP-460 are neuroprotective in a transgenic mouse model of amyotrophic lateral sclerosis. Journal of Neurochemistry, 2007, 102, 991-1000.	2.1	53

#	Article	IF	CITATIONS
163	GABAA-receptor mRNA expression in the prefrontal and temporal cortex of ALS patients. Journal of the Neurological Sciences, 2006, 250, 124-132.	0.3	28
164	Loss of Fas ligand-function improves survival in G93A-transgenic ALS mice. Journal of the Neurological Sciences, 2006, 251, 44-49.	0.3	41
165	Neural mitochondrial Ca2+capacity impairment precedes the onset of motor symptoms in C93A Cu/Zn-superoxide dismutase mutant mice. Journal of Neurochemistry, 2006, 96, 1349-1361.	2.1	203
166	Cell-permeable peptide antioxidants as a novel therapeutic approach in a mouse model of amyotrophic lateral sclerosis. Journal of Neurochemistry, 2006, 98, 1141-1148.	2.1	153
167	Additive neuroprotective effects of a histone deacetylase inhibitor and a catalytic antioxidant in a transgenic mouse model of amyotrophic lateral sclerosis. Neurobiology of Disease, 2006, 22, 40-49.	2.1	165
168	Thalidomide and Lenalidomide Extend Survival in a Transgenic Mouse Model of Amyotrophic Lateral Sclerosis. Journal of Neuroscience, 2006, 26, 2467-2473.	1.7	178
169	Integrative role of cPLA2with COX-2 and the effect of non-steriodal anti-inflammatory drugs in a transgenic mouse model of amyotrophic lateral sclerosis. Journal of Neurochemistry, 2005, 93, 403-411.	2.1	72
170	Celastrol Blocks Neuronal Cell Death and Extends Life in Transgenic Mouse Model of Amyotrophic Lateral Sclerosis. Neurodegenerative Diseases, 2005, 2, 246-254.	0.8	175
171	The mRNA expression of AMPA type glutamate receptors in the primary motor cortex of patients with amyotrophic lateral sclerosis: an in situ hybridization study. Neuroscience Letters, 2004, 360, 170-174.	1.0	10
172	Distribution of GABA _A Receptor mRNA in the Motor Cortex of ALS Patients. Journal of Neuropathology and Experimental Neurology, 2003, 62, 1041-1051.	0.9	86
173	Human GABAA receptors on dopaminergic neurons in the pars compacta of the substantia nigra. Journal of Comparative Neurology, 2002, 452, 360-366.	0.9	27
174	Functional Characterization of the Murine Serotonin Transporter Gene Promoter in Serotonergic Raphe Neurons. Journal of Neurochemistry, 1998, 70, 932-939.	2.1	35
175	Gene structure and 5â€2-flanking regulatory region of the murine serotonin transporter. Molecular Brain Research, 1997, 44, 286-292.	2.5	50
176	Allelic Variation of Human Serotonin Transporter Gene Expression. Journal of Neurochemistry, 1996, 66, 2621-2624.	2.1	1,938