
Anna Chernikova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7077337/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improved Ferroelectric Switching Endurance of La-Doped Hf _{0.5} Zr _{0.5} O ₂ Thin Films. ACS Applied Materials & Interfaces, 2018, 10, 2701-2708.	8.0	207
2	Ultrathin Hf _{0.5} Zr _{0.5} O ₂ Ferroelectric Films on Si. ACS Applied Materials & Interfaces, 2016, 8, 7232-7237.	8.0	186
3	Mitigating wakeup effect and improving endurance of ferroelectric HfO2-ZrO2 thin films by careful La-doping. Journal of Applied Physics, 2019, 125, .	2.5	110
4	Ferroelectric properties of full plasma-enhanced ALD TiN/La:HfO2/TiN stacks. Applied Physics Letters, 2016, 108, .	3.3	79
5	Identification of the nature of traps involved in the field cycling of Hf0.5Zr0.5O2-based ferroelectric thin films. Acta Materialia, 2019, 166, 47-55.	7.9	76
6	Ferroelectric properties of lightly doped La:HfO2 thin films grown by plasma-assisted atomic layer deposition. Applied Physics Letters, 2017, 111, .	3.3	69
7	Confinement-free annealing induced ferroelectricity in Hf0.5Zr0.5O2 thin films. Microelectronic Engineering, 2015, 147, 15-18.	2.4	64
8	Fully ALD-grown TiN/Hf0.5Zr0.5O2/TiN stacks: Ferroelectric and structural properties. Applied Physics Letters, 2016, 109, .	3.3	64
9	Electron transport across ultrathin ferroelectric Hf0.5Zr0.5O2 films on Si. Microelectronic Engineering, 2017, 178, 250-253.	2.4	61
10	Ferroelectricity in Hf _{0.5} Zr _{0.5} O ₂ Thin Films: A Microscopic Study of the Polarization Switching Phenomenon and Field-Induced Phase Transformations. ACS Applied Materials & Interfaces, 2018, 10, 8818-8826.	8.0	55
11	Effect of Polarization Reversal in Ferroelectric TiN/Hf _{0.5} Zr _{0.5} O ₂ /TiN Devices on Electronic Conditions at Interfaces Studied in Operando by Hard X-ray Photoemission Spectroscopy. ACS Applied Materials & Interfaces, 2017, 9, 43370-43376.	8.0	46
12	La-doped Hf0.5Zr0.5O2 thin films for high-efficiency electrostatic supercapacitors. Applied Physics Letters, 2018, 113, .	3.3	43
13	Origin of the retention loss in ferroelectric Hf0.5Zr0.5O2-based memory devices. Acta Materialia, 2021, 204, 116515.	7.9	36
14	Correlation between bioactivity and structural properties of titanium dioxide coatings grown by atomic layer deposition. Applied Surface Science, 2012, 258, 3415-3419.	6.1	35
15	Synthesis of Large Area Two-Dimensional MoS ₂ Films by Sulfurization of Atomic Layer Deposited MoO ₃ Thin Film for Nanoelectronic Applications. ACS Applied Nano Materials, 2019, 2, 7521-7531.	5.0	34
16	Charge transport mechanism in thin films of amorphous and ferroelectric Hf0.5Zr0.5O2. JETP Letters, 2015, 102, 544-547.	1.4	25
17	Low temperature plasmaâ€enhanced ALD TiN ultrathin films for Hf _{0.5} 2r _{0.5} 0.50 ₂ â€based ferroelectric MIM structures. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700056.	1.8	20
18	Temperature controlled Ru and RuO2 growth via O* radical-enhanced atomic layer deposition with Ru(EtCp)2. Journal of Chemical Physics, 2019, 151, 204701.	3.0	18

#	Article	IF	CITATIONS
19	Resistance Switching Peculiarities in Nonfilamentary Selfâ€Rectified TiN/Ta ₂ O ₅ /Ta and TiN/HfO ₂ /Ta ₂ O ₅ /Ta Stacks. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900952.	1.8	18
20	Thickness-Dependent Structural and Electrical Properties of WS ₂ Nanosheets Obtained via the ALD-Grown WO ₃ Sulfurization Technique as a Channel Material for Field-Effect Transistors. ACS Omega, 2021, 6, 34429-34437.	3.5	16
21	Influence of ALD Ru bottom electrode on ferroelectric properties of Hf0.5Zr0.5O2-based capacitors. Applied Physics Letters, 2020, 117, .	3.3	15
22	Effect of dielectric stoichiometry and interface chemical state on band alignment between tantalum oxide and platinum. Applied Physics Letters, 2015, 107, .	3.3	14
23	Impact of the Atomic Layer-Deposited Ru Electrode Surface Morphology on Resistive Switching Properties of TaO _{<i>x</i>} -Based Memory Structures. ACS Applied Materials & Interfaces, 2020, 12, 55331-55341.	8.0	14
24	Leakage Currents Mechanism in Thin Films of Ferroelectric Hf _{0.5} Zr _{0.5} O ₂ . ECS Transactions, 2017, 75, 123-129.	0.5	13
25	Dynamic imprint recovery as an origin of the pulse width dependence of retention in Hf0.5Zr0.5O2-based capacitors. Applied Physics Letters, 2021, 119, .	3.3	12
26	Influence of the Annealing Temperature and Applied Electric Field on the Reliability of TiN/Hf _{0.5} Zr _{0.5} O ₂ /TiN Capacitors. ACS Applied Electronic Materials, 2021, 3, 4317-4327.	4.3	12
27	Investigation of the properties and manufacturing features of nonvolatile FRAM memory based on atomic layer deposition. Russian Microelectronics, 2016, 45, 262-269.	0.5	8
28	Short-Range Order in Amorphous and Crystalline Ferroelectric Hf0.5Zr0.5O2. Journal of Experimental and Theoretical Physics, 2018, 126, 816-824.	0.9	6
29	The Effect of Five-Day Dry Immersion on the Nervous and Metabolic Mechanisms of the Circulatory System. Frontiers in Physiology, 2020, 11, 692.	2.8	6
30	Atomic layer deposition of Al2O3 and AlxTi1â^'xOy thin films on N2O plasma pretreated carbon materials. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, 01A135.	2.1	4
31	Structural, chemical and electrical properties of ALDâ€grown Hf _{<i>x</i>} Al _{1–<i>x</i>} O _{<i>y</i>} thin films for MIM capacitors. Physica Status Solidi (B): Basic Research, 2015, 252, 701-708.	1.5	4
32	Leakage currents mechanism in thin films of ferroelectric Hf _{0.5} Zr _{0.5} O ₂ . Journal of Physics: Conference Series, 2017, 864, 012002.	0.4	4
33	Charge Transport Mechanism in Atomic Layer Deposited Oxygenâ€Đeficient TaO x Films. Physica Status Solidi (B): Basic Research, 2021, 258, 2000432.	1.5	4
34	Atomic Layer Deposition of Ultrathin Tungsten Oxide Films from WH ₂ (Cp) ₂ and Ozone. Journal of Physical Chemistry C, 2021, 125, 21663-21669.	3.1	4
35	Two-Dimensional and Screw Growth of MoS2 Films in the Process of Chemical Deposition from the Gas Phase. Russian Journal of Applied Chemistry, 2019, 92, 596-601.	0.5	2
36	Charge transport in thin layers of ferroelectric Hf0.5Zr0.5O2. Russian Microelectronics, 2016, 45, 350-356.	0.5	1