Florent Moissenet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/707729/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neuroplastic changes mediate motor recovery with implanted peroneal nerve stimulator in individuals with chronic stroke: An open-label multimodal pilot study. Annals of Physical and Rehabilitation Medicine, 2021, 64, 101358.	2.3	1
2	Comparison of simulated key pinch after three surgical procedures for trapeziometacarpal osteoarthritis: a cadaver study. Journal of Hand Surgery: European Volume, 2021, 46, 1088-1095.	1.0	6
3	Assessment of trapezial prosthetic cup migration: A biomechanical study. Hand Surgery and Rehabilitation, 2021, 40, 754-759.	0.4	3
4	Comparison of two radiographic landmarks for centering the trapezial component in total trapeziometacarpal arthroplasty. Hand Surgery and Rehabilitation, 2021, 40, 609-613.	0.4	4
5	Inertial data simulation from optoelectronic data during gait: Preliminary results of validation on on one asymptomatic subject. Gait and Posture, 2021, 90, 74-75.	1.4	0
6	Accuracy of the tibiofemoral contact forces estimated by a subject-specific musculoskeletal model with fluoroscopy-based contact point trajectories. Journal of Biomechanics, 2020, 113, 110117.	2.1	4
7	Is the Pelvis-Thorax Coordination a Valuable Outcome Instrument to Assess Patients With Hip Osteoarthritis?. Frontiers in Bioengineering and Biotechnology, 2020, 7, 457.	4.1	1
8	Multibody Optimisations: From Kinematic Constraints to Knee Contact Forces and Ligament Forces. Springer Tracts in Advanced Robotics, 2019, , 65-89.	0.4	2
9	A multimodal dataset of human gait at different walking speeds established on injury-free adult participants. Scientific Data, 2019, 6, 111.	5.3	65
10	Lower limb sagittal gait kinematics can be predicted based on walking speed, gender, age and BMI. Scientific Reports, 2019, 9, 9510.	3.3	44
11	Can a reduction approach predict reliable joint contact and musculo-tendon forces?. Journal of Biomechanics, 2019, 95, 109329.	2.1	7
12	An Optimization Method Tracking EMG, Ground Reactions Forces, and Marker Trajectories for Musculo-Tendon Forces Estimation in Equinus Gait. Frontiers in Neurorobotics, 2019, 13, 48.	2.8	14
13	Home self-training: Visual feedback for assisting physical activity for stroke survivors. Computer Methods and Programs in Biomedicine, 2019, 176, 111-120.	4.7	16
14	Influence of normative data's walking speed on the computation of conventional gait indices. Journal of Biomechanics, 2018, 76, 68-73.	2.1	14
15	Individual muscle contributions to ground reaction and to joint contact, ligament and bone forces during normal gait. Multibody System Dynamics, 2017, 40, 193-211.	2.7	13
16	Effect of various upper limb multibody models on soft tissue artefact correction: A case study. Journal of Biomechanics, 2017, 62, 102-109.	2.1	24
17	Brain plasticity after implanted peroneal nerve electrical stimulation to improve gait in chronic stroke patients: Two case reports. NeuroRehabilitation, 2017, 40, 251-258.	1.3	13
18	Use of electromyography to optimize Lokomat ® settings for subject-specific gait rehabilitation in post-stroke hemiparetic patients: A proof-of-concept study. Neurophysiologie Clinique, 2017, 47, 293-299.	2.2	12

FLORENT MOISSENET

#	Article	IF	CITATIONS
19	Kinematic models of the upper limb joints for multibody kinematics optimisation: An overview. Journal of Biomechanics, 2017, 62, 87-94.	2.1	60
20	Alterations of musculoskeletal models for a more accurate estimation of lower limb joint contact forces during normal gait: A systematic review. Journal of Biomechanics, 2017, 63, 8-20.	2.1	35
21	The interpretation of conventional gait indices is related to the normative data's walking speed. Gait and Posture, 2017, 57, 217-218.	1.4	18
22	Individual contributions of the lower limb muscles to the position of the centre of pressure during gait. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20, S137-S138.	1.6	4
23	Identifying and understanding gait deviations: critical review and perspectives. Movement and Sports Sciences - Science Et Motricite, 2017, , 77-88.	0.3	9
24	Influence of walking velocity on strategies of head stabilisation. Movement and Sports Sciences - Science Et Motricite, 2016, , 57-61.	0.3	1
25	Proposition of a Classification of Adult Patients with Hemiparesis in Chronic Phase. PLoS ONE, 2016, 11, e0156726.	2.5	15
26	Influence of a rhythmic auditory stimulation on asymptomatic gait. Gait and Posture, 2016, 50, 17-22.	1.4	15
27	Contribution of individual musculo-tendon forces to the axial compression force of the femur during normal gait. Movement and Sports Sciences - Science Et Motricite, 2016, , 63-69.	0.3	3
28	Control of Stroke-Related Genu Recurvatum With Prolonged Timing of Dorsiflexor Functional Electrical Stimulation: A Case Study. Journal of Neurologic Physical Therapy, 2016, 40, 209-215.	1.4	7
29	Influence of the Level of Muscular Redundancy on the Validity of a Musculoskeletal Model. Journal of Biomechanical Engineering, 2016, 138, 021019.	1.3	15
30	State of the art and current limits of musculo-skeletal models for clinical applications. Movement and Sports Sciences - Science Et Motricite, 2015, , 7-17.	0.3	13
31	Global sensitivity analysis of the joint kinematics during gait to the parameters of a lower limb multi-body model. Medical and Biological Engineering and Computing, 2015, 53, 655-667.	2.8	28
32	Validity of a musculoskeletal model using two different geometries for estimating hip contact forces during normal walking. Computer Methods in Biomechanics and Biomedical Engineering, 2015, 18, 2000-2001.	1.6	8
33	Comparison and validation of five scapulothoracic models for correcting soft tissue artefact through multibody optimisation. Computer Methods in Biomechanics and Biomedical Engineering, 2015, 18, 2014-2015.	1.6	5
34	Long-term effects of an implantable peroneal nerve stimulator on kinematics and gait capacities in the drop-foot treatment of stroke survivors. Annals of Physical and Rehabilitation Medicine, 2015, 58, e157-e158.	2.3	0
35	Multi-objective optimisation for musculoskeletal modelling: Application to a planar elbow model. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2014, 228, 1108-1113.	1.8	5
36	An upper limb model proposal for multi-body optimisation: effects of anatomical constraints on the kinematics. Computer Methods in Biomechanics and Biomedical Engineering, 2014, 17, 90-91.	1.6	0

FLORENT MOISSENET

#	Article	IF	CITATIONS
37	Introduction of a set of EMG-based muscular activations in a multi-objective optimisation when solving the muscular redundancy problem during gait. Computer Methods in Biomechanics and Biomedical Engineering, 2014, 17, 132-133.	1.6	1
38	Biomechanics analysis of the ilio-psoas transfer related to the lumbosacral myelomeningocele. Annals of Physical and Rehabilitation Medicine, 2014, 57, e111.	2.3	0
39	A 3D lower limb musculoskeletal model for simultaneous estimation of musculo-tendon, joint contact, ligament and bone forces during gait. Journal of Biomechanics, 2014, 47, 50-58.	2.1	61
40	Implanted functional electrical stimulation of the fibularis communis nerve: Impacts on gait quality and consequences on cerebral cortex activity. Annals of Physical and Rehabilitation Medicine, 2013, 56, e385.	2.3	0
41	A New Optimization Criterion Introducing the Muscle Stretch Velocity in the Muscular Redundancy Problem: A First Step into the Modeling of Spastic Muscle. Cognitive Systems Monographs, 2013, , 155-164.	0.1	0
42	Simultaneous Prediction of Musculo-Tendon, Joint Contact, Ligament and Bone Forces in the Lower Limb During Gait Using a One-Step Static Optimisation Procedure. , 2013, , .		0
43	EMG-based validation of musculo-skeletal models for gait analysis. Computer Methods in Biomechanics and Biomedical Engineering, 2013, 16, 152-154.	1.6	15
44	Potential of the Pseudo-Inverse Method as a Constrained Static Optimization for Musculo-Tendon Forces Prediction. Journal of Biomechanical Engineering, 2012, 134, 064503.	1.3	2
45	Influence of joint models on lower-limb musculo-tendon forces and three-dimensional joint reaction forces during gait. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2012, 226, 146-160.	1.8	37
46	Anatomical kinematic constraints: consequences on musculo-tendon forces and joint reactions. Multibody System Dynamics, 2012, 28, 125-141.	2.7	28
47	Introduction of Contact Forces Minimization in the Musculo-Tendon Forces Optimization During Gait. , 2011, , .		0