
Jagabandhu Patra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7077208/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High entropy spinel oxide nanoparticles for superior lithiation–delithiation performance. Journal of Materials Chemistry A, 2020, 8, 18963-18973.	10.3	164
2	High dispersion of 1-nm SnO2 particles between graphene nanosheets constructed using supercritical CO2 fluid for sodium-ion battery anodes. Nano Energy, 2016, 28, 124-134.	16.0	101
3	Moderately concentrated electrolyte improves solid–electrolyte interphase and sodium storage performance of hard carbon. Energy Storage Materials, 2019, 16, 146-154.	18.0	73
4	Supercritical CO ₂ â€Assisted SiO <i>_x</i> /Carbon Multiâ€Layer Coating on Si Anode for Lithiumâ€Ion Batteries. Advanced Functional Materials, 2021, 31, 2104135.	14.9	59
5	Highly enhanced electrochemical performance of ultrafine CuO nanoparticles confined in ordered mesoporous carbons as anode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 14222-14233.	10.3	58
6	Atomic-scale investigation of Lithiation/Delithiation mechanism in High-entropy spinel oxide with superior electrochemical performance. Chemical Engineering Journal, 2021, 420, 129838.	12.7	53
7	Co-free high entropy spinel oxide anode with controlled morphology and crystallinity for outstanding charge/discharge performance in Lithium-ion batteries. Chemical Engineering Journal, 2022, 430, 132658.	12.7	49
8	Carbonaceous Anodes Derived from Sugarcane Bagasse for Sodiumâ€lon Batteries. ChemSusChem, 2019, 12, 2302-2309.	6.8	48
9	Effects of Elemental Modulation on Phase Purity and Electrochemical Properties of Coâ€free Highâ€Entropy Spinel Oxide Anodes for Lithiumâ€ion Batteries. Advanced Functional Materials, 2022, 32, .	14.9	48
10	Electrolyte Optimization for Enhancing Electrochemical Performance of Antimony Sulfide/Graphene Anodes for Sodium-Ion Batteries–Carbonate-Based and Ionic Liquid Electrolytes. ACS Sustainable Chemistry and Engineering, 2017, 5, 8269-8276.	6.7	43
11	A Novel Moistureâ€Insensitive and Low orrosivity Ionic Liquid Electrolyte for Rechargeable Aluminum Batteries. Advanced Functional Materials, 2020, 30, 1909565.	14.9	38
12	Comparative Study on the Morphology-Dependent Performance of Various CuO Nanostructures as Anode Materials for Sodium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 10876-10885.	6.7	37
13	A Waterâ€Soluble NaCMC/NaPAA Binder for Exceptional Improvement of Sodiumâ€Ion Batteries with an SnO ₂ â€Ordered Mesoporous Carbon Anode. ChemSusChem, 2018, 11, 3923-3931.	6.8	34
14	Three-dimensional interpenetrating mesoporous carbon confining SnO ₂ particles for superior sodiation/desodiation properties. Nanoscale, 2017, 9, 8674-8683.	5.6	33
15	Hybrid electrolyte enables safe and practical 5 V LiNi _{0.5} Mn _{1.5} O ₄ batteries. Journal of Materials Chemistry A, 2019, 7, 16516-16525.	10.3	32
16	Highly concentrated carbonate electrolyte for Li-ion batteries with lithium metal and graphite anodes. Journal of Power Sources, 2020, 450, 227657.	7.8	32
17	Manipulation of Nitrogen-Heteroatom Configuration for Enhanced Charge-Storage Performance and Reliability of Nanoporous Carbon Electrodes. ACS Applied Materials & Interfaces, 2020, 12, 32797-32805.	8.0	32
18	Charge–Discharge Mechanism of Highâ€Entropy Coâ€Free Spinel Oxide Toward Li ⁺ Storage Examined Using Operando Quickâ€Scanning Xâ€Ray Absorption Spectroscopy. Advanced Science, 2022, 9, .	11.2	28

#	Article	IF	CITATIONS
19	Optimizing the Mg Doping Concentration of Na ₃ V _{2–<i>x</i>} Mg _{<i>x</i>} (PO ₄) ₂ F _{3<!--<br-->for Enhanced Sodiation/Desodiation Properties. ACS Sustainable Chemistry and Engineering, 2021, 9, 6962-6971.}	/syb>/C	25
20	Hydrogenated Anatase and Rutile TiO ₂ for Sodium-Ion Battery Anodes. ACS Applied Energy Materials, 2021, 4, 5738-5746.	5.1	22
21	Electrochemical Na ⁺ storage properties of SnO ₂ /graphene anodes in carbonate-based and ionic liquid electrolytes. Journal of Materials Chemistry A, 2017, 5, 13776-13784.	10.3	21
22	Composition manipulation of bis(fluorosulfonyl)imide-based ionic liquid electrolyte for high-voltage graphite//LiNi0.5Mn1.5O4 lithium-ion batteries. Chemical Engineering Journal, 2021, 415, 128904.	12.7	21
23	Supercapacitive Properties of Micropore―and Mesoporeâ€Rich Activated Carbon in Ionic‣iquid Electrolytes with Various Constituent Ions. ChemSusChem, 2019, 12, 449-456.	6.8	20
24	Superior coulombic efficiency of lithium anodes for rechargeable batteries utilizing high-concentration ether electrolytes. Electrochimica Acta, 2019, 319, 625-633.	5.2	18
25	Composition Modulation of Ionic Liquid Hybrid Electrolyte for 5 V Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 42049-42056.	8.0	18
26	Ga-doped lithium lanthanum zirconium oxide electrolyte for solid-state Li batteries. Electrochimica Acta, 2020, 353, 136536.	5.2	18
27	Electrochemical performance of 0.5Li2MnO3–0.5Li(Mn0.375Ni0.375Co0.25)O2 composite cathode inÂpyrrolidinium-based ionic liquid electrolytes. Journal of Power Sources, 2015, 294, 22-30.	7.8	16
28	Ordered nano-structured mesoporous CMK-8 and other carbonaceous positive electrodes for rechargeable aluminum batteries. Chemical Engineering Journal, 2021, 417, 129131.	12.7	15
29	High-Li+-fraction ether-side-chain pyrrolidinium–asymmetric imide ionic liquid electrolyte for high-energy-density Si//Ni-rich layered oxide Li-ion batteries. Chemical Engineering Journal, 2022, 430, 132693.	12.7	15
30	High-voltage lithium-metal battery with three-dimensional mesoporous carbon anode host and ether/carbonate binary electrolyte. Carbon, 2021, 184, 752-763.	10.3	10
31	Mixed ionic liquid/organic carbonate electrolytes for LiNi0.8Co0.15Al0.05O2 electrodes at various temperatures. RSC Advances, 2015, 5, 106824-106831.	3.6	7
32	Graphene induced crystallinity and hydrous state variations of ruthenium oxide electrodes for superior energy storage performance. Electrochimica Acta, 2020, 360, 136995.	5.2	7
33	A Holey Graphene Additive for Boosting Performance of Electric Double-Layer Supercapacitors. Polymers, 2020, 12, 765.	4.5	7
34	Improving high-temperature performance of lithium-rich cathode by roll-to-roll atomic layer deposition of titania nanocoating for lithium-ion batteries. Journal of Energy Storage, 2021, 44, 103348.	8.1	7
35	lonic Liquids with Various Constituent lons To Optimize Non-Enzymatic Electrochemical Detection Properties of Graphene Electrodes. ACS Sustainable Chemistry and Engineering, 2019, 7, 16233-16240.	6.7	6
36	Hydrous ruthenium oxide-tantalum pentoxide thin film electrodes prepared by thermal decomposition for electrochemical capacitors. Ceramics International, 2020, 46, 16636-16643.	4.8	4

#	Article	IF	CITATIONS
37	Electrochemical characteristics of 0.3Li2MnO3–0.7LiMn1.5Ni0.5O4 composite cathode in pyrrolidinium-based ionic liquid electrolytes. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95, 195-201.	5.3	2
38	Hierarchical Carbon Composites for Highâ€Energy/Powerâ€Density and Highâ€Reliability Supercapacitors with Low Aging Rate. ChemSusChem, 2022, 15, .	6.8	2
39	Nitrogen-doped holey graphene additive for high-performance electric double-layer supercapacitors. Electrochimica Acta, 2022, 425, 140713.	5.2	2
40	Creating electronic and ionic conductivity gradients for improving energy storage performance of ruthenium oxide electrodes. Journal of Alloys and Compounds, 2021, 862, 158013.	5.5	0