
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7077145/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution.<br>Nature Communications, 2018, 9, 1460.                                                        | 12.8 | 781       |
| 2  | Progress in Research into 2D Graphdiyne-Based Materials. Chemical Reviews, 2018, 118, 7744-7803.                                                                                             | 47.7 | 745       |
| 3  | Quantifying thiol–gold interactions towards the efficient strength control. Nature<br>Communications, 2014, 5, 4348.                                                                         | 12.8 | 518       |
| 4  | Highly Efficient and Selective Generation of Ammonia and Hydrogen on a Graphdiyne-Based Catalyst.<br>Journal of the American Chemical Society, 2019, 141, 10677-10683.                       | 13.7 | 474       |
| 5  | Overall water splitting by graphdiyne-exfoliated and -sandwiched layered double-hydroxide nanosheet<br>arrays. Nature Communications, 2018, 9, 5309.                                         | 12.8 | 287       |
| 6  | 2D graphdiyne: an emerging carbon material. Chemical Society Reviews, 2022, 51, 2681-2709.                                                                                                   | 38.1 | 225       |
| 7  | Graphdiyne and its Assembly Architectures: Synthesis, Functionalization, and Applications. Advanced<br>Materials, 2019, 31, e1803101.                                                        | 21.0 | 214       |
| 8  | Graphdiyne‣upported NiCo <sub>2</sub> S <sub>4</sub> Nanowires: A Highly Active and Stable 3D<br>Bifunctional Electrode Material. Small, 2017, 13, 1700936.                                  | 10.0 | 194       |
| 9  | Graphdiyne@Janus Magnetite for Photocatalytic Nitrogen Fixation. Angewandte Chemie - International<br>Edition, 2021, 60, 3170-3174.                                                          | 13.8 | 174       |
| 10 | Efficient Hydrogen Production on a 3D Flexible Heterojunction Material. Advanced Materials, 2018, 30,<br>e1707082.                                                                           | 21.0 | 158       |
| 11 | Graphdiyne Interface Engineering: Highly Active and Selective Ammonia Synthesis. Angewandte Chemie -<br>International Edition, 2020, 59, 13021-13027.                                        | 13.8 | 154       |
| 12 | Self-catalyzed growth of Cu@graphdiyne core–shell nanowires array for high efficient hydrogen<br>evolution cathode. Nano Energy, 2016, 30, 858-866.                                          | 16.0 | 149       |
| 13 | Ultrathin Nanosheet of Graphdiyne-Supported Palladium Atom Catalyst for Efficient Hydrogen<br>Production. IScience, 2019, 11, 31-41.                                                         | 4.1  | 149       |
| 14 | Extraordinarily Durable Graphdiyne-Supported Electrocatalyst with High Activity for Hydrogen<br>Production at All Values of pH. ACS Applied Materials & Interfaces, 2016, 8, 31083-31091.    | 8.0  | 125       |
| 15 | Stabilizing Interface pH by Nâ€Modified Graphdiyne for Dendriteâ€Free and Highâ€Rate Aqueous Znâ€Ion<br>Batteries. Angewandte Chemie - International Edition, 2022, 61, .                    | 13.8 | 124       |
| 16 | 2D graphdiyne materials: challenges and opportunities in energy field. Science China Chemistry, 2018,<br>61, 765-786.                                                                        | 8.2  | 123       |
| 17 | Fluorographdiyne: A Metalâ€Free Catalyst for Applications in Water Reduction and Oxidation.<br>Angewandte Chemie - International Edition, 2019, 58, 13897-13903.                             | 13.8 | 123       |
| 18 | Controlled Growth of MoS <sub>2</sub> Nanosheets on 2D Nâ€Doped Graphdiyne Nanolayers for Highly<br>Associated Effects on Water Reduction. Advanced Functional Materials, 2018, 28, 1707564. | 14.9 | 119       |

| #  | Article                                                                                                                                                                           | lF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Graphdiyne as a Host Active Material for Perovskite Solar Cell Application. Nano Letters, 2018, 18, 6941-6947.                                                                    | 9.1  | 110       |
| 20 | Graphdiyne-based metal atomic catalysts for synthesizing ammonia. National Science Review, 2021, 8, nwaa213.                                                                      | 9.5  | 110       |
| 21 | Multifunctional Singleâ€Crystallized Carbonate Hydroxides as Highly Efficient Electrocatalyst for Full<br>Water splitting. Advanced Energy Materials, 2018, 8, 1800175.           | 19.5 | 101       |
| 22 | 2D graphdiyne loading ruthenium atoms for high efficiency water splitting. Nano Energy, 2020, 72,<br>104667.                                                                      | 16.0 | 91        |
| 23 | Highly Dispersed Platinum Chlorine Atoms Anchored on Gold Quantum Dots for a Highly Efficient<br>Electrocatalyst. Journal of the American Chemical Society, 2022, 144, 1921-1928. | 13.7 | 88        |
| 24 | In situ growth of graphdiyne based heterostructure: Toward efficient overall water splitting. Nano<br>Energy, 2019, 59, 591-597.                                                  | 16.0 | 78        |
| 25 | Ultrathin Graphdiyne-Wrapped Iron Carbonate Hydroxide Nanosheets toward Efficient Water<br>Splitting. ACS Applied Materials & Interfaces, 2019, 11, 2618-2625.                    | 8.0  | 73        |
| 26 | Mapping of atomic catalyst on graphdiyne. Nano Energy, 2019, 62, 754-763.                                                                                                         | 16.0 | 64        |
| 27 | Direct Synthesis of Crystalline Graphdiyne Analogue Based on Supramolecular Interactions. Journal of the American Chemical Society, 2019, 141, 48-52.                             | 13.7 | 60        |
| 28 | Rationally engineered active sites for efficient and durable hydrogen generation. Nature<br>Communications, 2019, 10, 2281.                                                       | 12.8 | 59        |
| 29 | Efficient hydrogen generation on graphdiyne-based heterostructure. Nano Energy, 2019, 55, 135-142.                                                                                | 16.0 | 59        |
| 30 | Acidic Water Oxidation on Quantum Dots of IrO <sub>x</sub> /Graphdiyne. Advanced Energy Materials, 2021, 11, 2101138.                                                             | 19.5 | 54        |
| 31 | Photoinduced Electrocatalysis on 3D Flexible OsO <i><sub>x</sub></i> Quantum Dots. Advanced<br>Energy Materials, 2021, 11, 2100234.                                               | 19.5 | 50        |
| 32 | 1D Nanowire Heterojunction Electrocatalysts of MnCo <sub>2</sub> O <sub>4</sub> /GDY for Efficient<br>Overall Water Splitting. Advanced Functional Materials, 2022, 32, .         | 14.9 | 48        |
| 33 | Porous graphdiyne loading CoOx quantum dots for fixation nitrogen reaction. Nano Energy, 2021, 89,<br>106333.                                                                     | 16.0 | 47        |
| 34 | Controlled Growth Interface of Charge Transfer Salts of Nickel-7,7,8,8-Tetracyanoquinodimethane on<br>Surface of Graphdiyne. CCS Chemistry, 2023, 5, 971-981.                     | 7.8  | 47        |
| 35 | Graphdiyne@Janus Magnetite for Photocatalytic Nitrogen Fixation. Angewandte Chemie, 2021, 133, 3207-3211.                                                                         | 2.0  | 46        |
| 36 | Graphdiyne-engineered heterostructures for efficient overall water-splitting. Nano Energy, 2019, 64,<br>103928.                                                                   | 16.0 | 43        |

| #  | Article                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Loading Copper Atoms on Graphdiyne for Highly Efficient Hydrogen Production. ChemPhysChem, 2020,<br>21, 2145-2149.                                                   | 2.1  | 40        |
| 38 | Efficient Hydrogen Evolution on Nanoscale Graphdiyne. Small, 2021, 17, e2006136.                                                                                     | 10.0 | 36        |
| 39 | Graphdiyne Ultrathin Nanosheets for Efficient Water Splitting. Advanced Functional Materials, 2021,<br>31, 2010112.                                                  | 14.9 | 35        |
| 40 | A new carbon allotrope: graphdiyne. Trends in Chemistry, 2022, 4, 754-768.                                                                                           | 8.5  | 35        |
| 41 | Fluorographdiyne: A Metalâ€Free Catalyst for Applications in Water Reduction and Oxidation.<br>Angewandte Chemie, 2019, 131, 14035-14041.                            | 2.0  | 34        |
| 42 | Atomic alloys of nickel-platinum on carbon network for methanol oxidation. Nano Energy, 2022, 95,<br>106984.                                                         | 16.0 | 31        |
| 43 | Inverted MAPbI 3 Perovskite Solar Cells with Graphdiyne Derivativeâ€Incorporated Electron Transport<br>Layers Exceeding 20% Efficiency. Solar Rrl, 2019, 3, 1900241. | 5.8  | 28        |
| 44 | Graphdiyneâ€Induced Iron Vacancy for Efficient Nitrogen Conversion. Advanced Science, 2022, 9,<br>e2102721.                                                          | 11.2 | 28        |
| 45 | Bimetallic Mixed Clusters Highly Loaded on Porous 2D Graphdiyne for Hydrogen Energy Conversion.<br>Advanced Science, 2021, 8, e2102777.                              | 11.2 | 27        |
| 46 | Highly selective and durable of monodispersed metal atoms in ammonia production. Nano Today, 2022,<br>43, 101431.                                                    | 11.9 | 27        |
| 47 | Highly Loaded Independent Pt <sup>0</sup> Atoms on Graphdiyne for pHâ€General Methanol Oxidation<br>Reaction. Advanced Science, 2022, 9, e2104991.                   | 11.2 | 26        |
| 48 | Stabilizing Interface pH by Nâ€Modified Graphdiyne for Dendriteâ€Free and Highâ€Rate Aqueous Znâ€ŀon<br>Batteries. Angewandte Chemie, 2022, 134, .                   | 2.0  | 24        |
| 49 | Controlled Synthesis of a Three-Segment Heterostructure for High-Performance Overall Water<br>Splitting. ACS Applied Materials & Interfaces, 2018, 10, 1771-1780.    | 8.0  | 22        |
| 50 | Metal-free amino-graphdiyne for applications in electrocatalytic hydrogen evolution. Journal of<br>Catalysis, 2021, 395, 129-135.                                    | 6.2  | 22        |
| 51 | Acetylenic bond-driven efficient hydrogen production of a graphdiyne based catalyst. Materials<br>Chemistry Frontiers, 2021, 5, 2247-2254.                           | 5.9  | 21        |
| 52 | Controlled Growth of the Interface of CdWO <i><sub>x</sub></i> /GDY for Hydrogen Energy<br>Conversion. Advanced Functional Materials, 2022, 32, .                    | 14.9 | 21        |
| 53 | A highly selective and active metal-free catalyst for ammonia production. Nanoscale Horizons, 2020, 5, 1274-1278.                                                    | 8.0  | 20        |
| 54 | Controllable growth of graphdiyne layered nanosheets for high-performance water oxidation.<br>Materials Chemistry Frontiers, 2021, 5, 4153-4159.                     | 5.9  | 19        |

| #  | Article                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Controlled Growth of Singleâ€Crystal Pd Quantum Dots on 2D Carbon for Large Current Density<br>Hydrogen Evolution. Advanced Functional Materials, 2022, 32, .     | 14.9 | 19        |
| 56 | High-loading metal atoms on graphdiyne for efficient nitrogen fixation to ammonia. Journal of<br>Materials Chemistry A, 2022, 10, 6073-6077.                      | 10.3 | 18        |
| 57 | Graphdiyne Interface Engineering: Highly Active and Selective Ammonia Synthesis. Angewandte Chemie, 2020, 132, 13121-13127.                                       | 2.0  | 15        |
| 58 | DNA-Guided Room-Temperature Synthesis of Single-Crystalline Gold Nanostructures on Graphdiyne<br>Substrates. ACS Central Science, 2020, 6, 779-786.               | 11.3 | 15        |
| 59 | Selective Conversion of CO <sub>2</sub> into Cyclic Carbonate on Atom Level Catalysts. ACS<br>Materials Au, 2021, 1, 107-115.                                     | 6.0  | 15        |
| 60 | Selectively Growing a Highly Active Interface of Mixed Nb–Rh Oxide/2D Carbon for Electrocatalytic<br>Hydrogen Production. Advanced Science, 2022, 9, e2104706.    | 11.2 | 15        |
| 61 | Graphdiyne@NiO <sub>x</sub> (OH) <sub>y</sub> heterostructure for efficient overall water splitting. Materials Chemistry Frontiers, 2021, 5, 5305-5311.           | 5.9  | 13        |
| 62 | Biodegradation of graphdiyne oxide in classically activated (M1) macrophages modulates cytokine production. Nanoscale, 2021, 13, 13072-13084.                     | 5.6  | 12        |
| 63 | Nitrogen-doped graphdiyne for effective metal deposition and heterogeneous Suzuki-Miyaura coupling<br>catalysis. Applied Catalysis A: General, 2021, 623, 118244. | 4.3  | 11        |
| 64 | Controlled Growth of Donor–Bridge–Acceptor Interface for Highâ€Performance Ammonia Production.<br>Small, 2022, 18, e2107136.                                      | 10.0 | 11        |
| 65 | Nickel(hydro)oxide/graphdiyne Catalysts for Efficient Oxygen Production Reaction. Chemical Research in Chinese Universities, 2021, 37, 1268-1274.                 | 2.6  | 10        |
| 66 | 2D Graphdiyne: A Rising Star on the Horizon of Energy Conversion. Chemistry - an Asian Journal, 2021,<br>16, 3259-3271.                                           | 3.3  | 8         |
| 67 | Loading Nickel Atoms on GDY for Efficient CO2 Fixation and Conversion. Chemical Research in Chinese Universities, 2022, 38, 92-98.                                | 2.6  | 8         |
| 68 | Graphdiyne/CdSe quantum dot heterostructure for efficient photoelectrochemical water oxidation.<br>2D Materials, 2021, 8, 044017.                                 | 4.4  | 7         |
| 69 | Single Molecule Study on Polymer–Nanoparticle Interactions: The Particle Shape Matters. Langmuir,<br>2017, 33, 7615-7621.                                         | 3.5  | 6         |
| 70 | Bismuth/Graphdiyne Heterostructure for Electrocatalytic Conversion of CO2 to Formate. Chemical<br>Research in Chinese Universities, 2022, 38, 1380-1386.          | 2.6  | 6         |
| 71 | A metal-free graphdiyne material for highly efficient oxidation of benzene to phenol. 2D Materials, 2021, 8, 044004.                                              | 4.4  | 4         |
| 72 | Conversion of Interfacial Chemical Bonds for Inducing Efficient Photoelectrocatalytic Water<br>Splitting. ACS Materials Au, 2022, 2, 321-329.                     | 6.0  | 4         |

| #  | Article                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Electronic structure modulation of metal-free graphdiyne for acidic oxygen evolution reaction. 2D<br>Materials, 2022, 9, 014008.                                                           | 4.4  | 3         |
| 74 | Hydrogen Evolution Reaction: Photoinduced Electrocatalysis on 3D Flexible OsO <i><sub>x</sub></i> Quantum Dots (Adv. Energy Mater. 18/2021). Advanced Energy Materials, 2021, 11, 2170071. | 19.5 | 1         |