Alireza Gharabaghi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7076854/publications.pdf

Version: 2024-02-01

			145106	1	190340	
88	3,437		33		53	
papers	citations		h-index		g-index	
90	90		90		4319	
all docs	docs citations		times ranked		citing authors	

#	Article	IF	Citations
1	Evaluation of signal analysis algorithms for ipsilateral motor-evoked potentials induced by transcranial magnetic stimulation. Journal of Neural Engineering, 2022, , .	1.8	O
2	Longâ€ŧerm effects of pallidal and thalamic deep brain stimulation in myoclonus dystonia. European Journal of Neurology, 2021, 28, 1566-1573.	1.7	12
3	Peripheral Electrical Stimulation Modulates Cortical Beta-Band Activity. Frontiers in Neuroscience, 2021, 15, 632234.	1.4	9
4	People With Parkinson's Disease and Freezing of Gait Show Abnormal Low Frequency Activity of Antagonistic Leg Muscles. Frontiers in Human Neuroscience, 2021, 15, 733067.	1.0	0
5	Brain State-dependent Gain Modulation of Corticospinal Output in the Active Motor System. Cerebral Cortex, 2020, 30, 371-381.	1.6	22
6	State-Dependent Gain Modulation of Spinal Motor Output. Frontiers in Bioengineering and Biotechnology, 2020, 8, 523866.	2.0	2
7	Online Mapping With the Deep Brain Stimulation Lead: A Novel Targeting Tool in Parkinson's Disease. Movement Disorders, 2020, 35, 1574-1586.	2.2	23
8	Consensus on the reporting and experimental design of clinical and cognitive-behavioural neurofeedback studies (CRED-nf checklist). Brain, 2020, 143, 1674-1685.	3.7	188
9	Brain-Machine Neurofeedback: Robotics or Electrical Stimulation?. Frontiers in Bioengineering and Biotechnology, 2020, 8, 639.	2.0	4
10	Transitions between repetitive tapping and upper limb freezing show impaired movement-related beta band modulation. Clinical Neurophysiology, 2020, 131, 2499-2507.	0.7	15
11	Clinical and Kinematic Correlates of Favorable Gait Outcomes From Subthalamic Stimulation. Frontiers in Neurology, 2020, 11, 212.	1.1	8
12	Evidence-Based Decision Aid for Patients With Parkinson Disease: Protocol for Interview Study, Online Survey, and Two Randomized Controlled Trials. JMIR Research Protocols, 2020, 9, e17482.	0.5	2
13	Anticipatory postural adjustments are modulated by substantia nigra stimulation in people with Parkinson's disease and freezing of gait. Parkinsonism and Related Disorders, 2019, 66, 34-39.	1.1	17
14	Anodal tDCS modulates cortical activity and synchronization in Parkinson's disease depending on motor processing. NeuroImage: Clinical, 2019, 22, 101689.	1.4	13
15	Combined endogenous and exogenous disinhibition of intracortical circuits augments plasticity induction in the human motor cortex. Brain Stimulation, 2019, 12, 1027-1040.	0.7	3
16	Different oscillatory entrainment of cortical networks during motor imagery and neurofeedback in right and left handers. NeuroImage, 2019, 195, 190-202.	2.1	13
17	Development of evidence-based quality indicators for deep brain stimulation in patients with Parkinson's disease and first year experience of implementation of a nation-wide registry. Parkinsonism and Related Disorders, 2019, 60, 3-9.	1.1	7
18	Deep brain stimulation of the substantia nigra for freezing of gait in Parkinson's disease: is it about stimulation frequency?. Parkinsonism and Related Disorders, 2019, 63, 229-230.	1.1	9

#	Article	IF	Citations
19	State-dependent brain stimulation: Power or phase?. Brain Stimulation, 2019, 12, 296-299.	0.7	24
20	Distinct Beta-band Oscillatory Circuits Underlie Corticospinal Gain Modulation. Cerebral Cortex, 2018, 28, 1502-1515.	1.6	54
21	Recruitment of Additional Corticospinal Pathways in the Human Brain with State-Dependent Paired Associative Stimulation. Journal of Neuroscience, 2018, 38, 1396-1407.	1.7	36
22	Directional communication during movement execution interferes with tremor in Parkinson's disease. Movement Disorders, 2018, 33, 251-261.	2.2	20
23	Behavioural outcomes of subthalamic stimulation and medical therapy versus medical therapy alone for Parkinson's disease with early motor complications (EARLYSTIM trial): secondary analysis of an open-label randomised trial. Lancet Neurology, The, 2018, 17, 223-231.	4.9	105
24	Reaction Time Predicts Brain–Computer Interface Aptitude. IEEE Journal of Translational Engineering in Health and Medicine, 2018, 6, 1-11.	2.2	8
25	Long-Term Effect of GPi-DBS in a Patient With Generalized Dystonia Due to GLUT1 Deficiency Syndrome. Frontiers in Neurology, 2018, 9, 381.	1.1	3
26	Extended enhancement of corticospinal connectivity with concurrent cortical and peripheral stimulation controlled by sensorimotor desynchronization. Brain Stimulation, 2018, 11, 1331-1335.	0.7	15
27	Plasticity of premotor cortico-muscular coherence in severely impaired stroke patients with hand paralysis. Neurolmage: Clinical, 2017, 14, 726-733.	1.4	68
28	Cumulative effects of single TMS pulses during beta-tACS are stimulation intensity-dependent. Brain Stimulation, 2017, 10, 1055-1060.	0.7	15
29	Physiological and behavioral effects of \hat{I}^2 -tACS on brain self-regulation in chronic stroke. Brain Stimulation, 2017, 10, 251-259.	0.7	40
30	Proprioceptive Feedback Facilitates Motor Imagery-Related Operant Learning of Sensorimotor \hat{l}^2 -Band Modulation. Frontiers in Neuroscience, 2017, 11, 60.	1.4	33
31	Effects of Subthalamic and Nigral Stimulation on Gait Kinematics in Parkinson's Disease. Frontiers in Neurology, 2017, 8, 543.	1.1	29
32	Constraints and Adaptation of Closed-Loop Neuroprosthetics for Functional Restoration. Frontiers in Neuroscience, 2017, 11, 111.	1.4	12
33	Neuromuscular Plasticity: Disentangling Stable and Variable Motor Maps in the Human Sensorimotor Cortex. Neural Plasticity, 2016, 2016, 1-13.	1.0	33
34	Brain State-Dependent Closed-Loop Modulation of Paired Associative Stimulation Controlled by Sensorimotor Desynchronization. Frontiers in Cellular Neuroscience, 2016, 10, 115.	1.8	35
35	Combining TMS and tACS for Closed-Loop Phase-Dependent Modulation of Corticospinal Excitability: A Feasibility Study. Frontiers in Cellular Neuroscience, 2016, 10, 143.	1.8	62
36	Probing Corticospinal Recruitment Patterns and Functional Synergies with Transcranial Magnetic Stimulation. Frontiers in Cellular Neuroscience, 2016, 10, 175.	1.8	25

#	Article	IF	CITATIONS
37	Detecting a Cortical Fingerprint of Parkinson's Disease for Closed-Loop Neuromodulation. Frontiers in Neuroscience, 2016, 10, 110.	1.4	11
38	Compensation or Restoration: Closed-Loop Feedback of Movement Quality for Assisted Reach-to-Grasp Exercises with a Multi-Joint Arm Exoskeleton. Frontiers in Neuroscience, 2016, 10, 280.	1.4	33
39	Closed-Loop Neuroprosthesis for Reach-to-Grasp Assistance: Combining Adaptive Multi-channel Neuromuscular Stimulation with a Multi-joint Arm Exoskeleton. Frontiers in Neuroscience, 2016, 10, 284.	1.4	28
40	Hybrid Neuroprosthesis for the Upper Limb: Combining Brain-Controlled Neuromuscular Stimulation with a Multi-Joint Arm Exoskeleton. Frontiers in Neuroscience, 2016, 10, 367.	1.4	42
41	What Turns Assistive into Restorative Brain-Machine Interfaces?. Frontiers in Neuroscience, 2016, 10, 456.	1.4	36
42	Closed-Loop Task Difficulty Adaptation during Virtual Reality Reach-to-Grasp Training Assisted with an Exoskeleton for Stroke Rehabilitation. Frontiers in Neuroscience, 2016, 10, 518.	1.4	63
43	<scp>A</scp> lphaâ€synuclein gene variants may predict neurostimulation outcome. Movement Disorders, 2016, 31, 601-603.	2.2	15
44	Closed-loop adaptation of neurofeedback based on mental effort facilitates reinforcement learning of brain self-regulation. Clinical Neurophysiology, 2016, 127, 3156-3164.	0.7	29
45	What is the optimal task difficulty for reinforcement learning of brain self-regulation?. Clinical Neurophysiology, 2016, 127, 3033-3041.	0.7	26
46	Multi-contact functional electrical stimulation for hand opening: electrophysiologically driven identification of the optimal stimulation site. Journal of NeuroEngineering and Rehabilitation, 2016, 13, 22.	2.4	33
47	Enhanced motor learning with bilateral transcranial direct current stimulation: Impact of polarity or current flow direction?. Clinical Neurophysiology, 2016, 127, 2119-2126.	0.7	44
48	Cortical correlates of susceptibility to upper limb freezing in Parkinson's disease. Clinical Neurophysiology, 2016, 127, 2386-2393.	0.7	22
49	Brain State-Dependent Transcranial Magnetic Closed-Loop Stimulation Controlled by Sensorimotor Desynchronization Induces Robust Increase of Corticospinal Excitability. Brain Stimulation, 2016, 9, 415-424.	0.7	91
50	An Unsupervised Online Spike-Sorting Framework. International Journal of Neural Systems, 2016, 26, 1550042.	3.2	24
51	Comparing Methods for Decoding Movement Trajectory from ECoG in Chronic Stroke Patients. Biosystems and Biorobotics, 2016, , 125-139.	0.2	6
52	Brain–robot interface driven plasticity: Distributed modulation of corticospinal excitability. Neurolmage, 2016, 125, 522-532.	2.1	67
53	Neuromuscular correlates of subthalamic stimulation and upper limb freezing in Parkinson's disease. Clinical Neurophysiology, 2016, 127, 610-620.	0.7	21
54	Self-regulation of circumscribed brain activity modulates spatially selective and frequency specific connectivity of distributed resting state networks. Frontiers in Behavioral Neuroscience, 2015, 9, 181.	1.0	44

#	Article	IF	Citations
55	Phase-dependent modulation as a novel approach for therapeutic brain stimulation. Frontiers in Computational Neuroscience, 2015, 9, 26.	1.2	22
56	Reinforcement learning of self-regulated \hat{l}^2 -oscillations for motor restoration in chronic stroke. Frontiers in Human Neuroscience, 2015, 9, 391.	1.0	55
57	Brain state-dependent robotic reaching movement with a multi-joint arm exoskeleton: combining brain-machine interfacing and robotic rehabilitation. Frontiers in Human Neuroscience, 2015, 9, 564.	1.0	62
58	Reinforcement learning for adaptive threshold control of restorative brain-computer interfaces: a Bayesian simulation. Frontiers in Neuroscience, 2015, 9, 36.	1.4	49
59	Estimating cognitive load during self-regulation of brain activity and neurofeedback with therapeutic brain-computer interfaces. Frontiers in Behavioral Neuroscience, 2015, 9, 21.	1.0	37
60	Projecting Navigated TMS Sites on the Gyral Anatomy Decreases Inter-subject Variability of Cortical Motor Maps. Brain Stimulation, 2015, 8, 831-837.	0.7	37
61	Oscillatory entrainment of the motor cortical network during motor imagery is modulated by the feedback modality. NeuroImage, 2015, 111, 1-11.	2.1	84
62	Subthalamic stimulation modulates cortical motor network activity and synchronization in Parkinson's disease. Brain, 2015, 138, 679-693.	3.7	66
63	Activity-dependent brain stimulation and robot-assisted movements for use-dependent plasticity. Clinical Neurophysiology, 2015, 126, 853-854.	0.7	13
64	Predicting workload profiles of brain–robot interface and electromygraphic neurofeedback with cortical resting-state networks: personal trait or task-specific challenge?. Journal of Neural Engineering, 2015, 12, 046029.	1.8	24
65	Long-term outcome of deep brain stimulation in fragile X-associated tremor/ataxia syndrome. Parkinsonism and Related Disorders, 2015, 21, 310-313.	1.1	26
66	Bridging the gap between motor imagery and motor execution with a brain–robot interface. Neurolmage, 2015, 108, 319-327.	2.1	81
67	Learned self-regulation of the lesioned brain with epidural electrocorticography. Frontiers in Behavioral Neuroscience, 2014, 8, 429.	1.0	36
68	Epidural electrocorticography of phantom hand movement following long-term upper-limb amputation. Frontiers in Human Neuroscience, 2014, 8, 285.	1.0	22
69	Epidural electrocorticography for monitoring of arousal in locked-in state. Frontiers in Human Neuroscience, 2014, 8, 861.	1.0	8
70	Neurosensory Effects of Transcranial Alternating Current Stimulation. Brain Stimulation, 2014, 7, 823-831.	0.7	44
71	The subthalamic nucleus modulates the early phase of probabilistic classification learning. Experimental Brain Research, 2014, 232, 2255-2262.	0.7	2
72	From assistance towards restoration with epidural brain-computer interfacing. Restorative Neurology and Neuroscience, 2014, 32, 517-525.	0.4	35

#	Article	IF	CITATIONS
73	Lateralized alpha-band cortical networks regulate volitional modulation of beta-band sensorimotor oscillations. NeuroImage, 2014, 87, 147-153.	2.1	55
74	Coupling brain-machine interfaces with cortical stimulation for brain-state dependent stimulation: enhancing motor cortex excitability for neurorehabilitation. Frontiers in Human Neuroscience, 2014, 8, 122.	1.0	108
75	Electrical Stimulation of the Human Homolog of the Medial Superior Temporal Area Induces Visual Motion Blindness. Journal of Neuroscience, 2013, 33, 18288-18297.	1.7	18
76	Nigral stimulation for resistant axial motor impairment in Parkinson's disease? A randomized controlled trial. Brain, 2013, 136, 2098-2108.	3.7	186
77	Long-term follow-up of subthalamic nucleus stimulation in glucocerebrosidase-associated Parkinson's disease. Journal of Neurology, 2012, 259, 1970-1972.	1.8	24
78	Biological motion processing: The left cerebellum communicates with the right superior temporal sulcus. Neurolmage, 2012, 59, 2824-2830.	2.1	111
79	Coupling BCI and cortical stimulation for brain-state-dependent stimulation: methods for spectral estimation in the presence of stimulation after-effects. Frontiers in Neural Circuits, 2012, 6, 87.	1.4	47
80	Task-specific activity and connectivity within the mentalizing network during emotion and intention mentalizing. Neurolmage, 2011, 55, 1899-1911.	2.1	88
81	Combined stimulation of the substantia nigra pars reticulata and the subthalamic nucleus is effective in hypokinetic gait disturbance in Parkinson's disease. Journal of Neurology, 2011, 258, 1183-1185.	1.8	46
82	Combined STN/SNr-DBS for the treatment of refractory gait disturbances in Parkinson's disease: study protocol for a randomized controlled trial. Trials, 2011, 12, 222.	0.7	18
83	Pallidal and thalamic deep brain stimulation in myoclonusâ€dystonia. Movement Disorders, 2010, 25, 1733-1743.	2.2	131
84	Resection of malignant brain tumors in eloquent cortical areas: a new multimodal approach combining 5-aminolevulinic acid and intraoperative monitoring. Journal of Neurosurgery, 2010, 113, 352-357.	0.9	117
85	Cerebellar Engagement in an Action Observation Network. Cerebral Cortex, 2010, 20, 486-491.	1.6	76
86	Perisylvian white matter connectivity in the human right hemisphere. BMC Neuroscience, 2009, 10, 15.	0.8	37
87	Applicability of an Electrosurgical Device Based on Electromagnetics in Neurosurgery. Operative Neurosurgery, 2006, 59, ONS-142-ONS-145.	0.4	2
88	The role of the right superior temporal gyrus in visual search—Insights from intraoperative electrical stimulation. Neuropsychologia, 2006, 44, 2578-2581.	0.7	69