
Douglas J Weber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7076762/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamic detection and reversal of myocardial ischemia using an artificially intelligent bioelectronic medicine. Science Advances, 2022, 8, eabj5473.	10.3	4
2	Motor neuroprosthesis implanted with neurointerventional surgery improves capacity for activities of daily living tasks in severe paralysis: first in-human experience. Journal of NeuroInterventional Surgery, 2021, 13, 102-108.	3.3	106
3	Recruitment of Primary Afferents by Dorsal Root Ganglion Stimulation using the Injectrode. , 2021, 2021, 609-612.		0
4	Electrical stimulation of the external ear acutely activates noradrenergic mechanisms in humans. Brain Stimulation, 2021, 14, 990-1001.	1.6	23
5	A modular strategy for next-generation upper-limb sensory-motor neuroprostheses. Med, 2021, 2, 912-937.	4.4	16
6	Stimulation of the dorsal root ganglion using an Injectrode [®] . Journal of Neural Engineering, 2021, 18, 056068.	3.5	9
7	Sensing and decoding the neural drive to paralyzed muscles during attempted movements of a person with tetraplegia using a sleeve array. Journal of Neurophysiology, 2021, 126, 2104-2118.	1.8	23
8	Augmented Transcutaneous Stimulation Using an Injectable Electrode: A Computational Study. Frontiers in Bioengineering and Biotechnology, 2021, 9, 796042.	4.1	4
9	Selectivity of afferent microstimulation at the DRG using epineural and penetrating electrode arrays. Journal of Neural Engineering, 2020, 17, 016011.	3.5	16
10	DRG microstimulation evokes postural responses in awake, standing felines. Journal of Neural Engineering, 2020, 17, 016014.	3.5	8
11	Hindlimb motor responses evoked by microstimulation of the lumbar dorsal root ganglia during quiet standing. Journal of Neural Engineering, 2020, 17, 016019.	3.5	4
12	EEC-based trial-by-trial texture classification during active touch. Scientific Reports, 2020, 10, 20755.	3.3	8
13	Host tissue response to floating microelectrode arrays chronically implanted in the feline spinal nerve. Journal of Neural Engineering, 2020, 17, 046012.	3.5	7
14	Effects of MEG-based neurofeedback for hand rehabilitation after tetraplegia: preliminary findings in cortical modulations and grip strength. Journal of Neural Engineering, 2020, 17, 026019.	3.5	5
15	Long-gap peripheral nerve repair through sustained release of a neurotrophic factor in nonhuman primates. Science Translational Medicine, 2020, 12, .	12.4	94
16	Advances in motion and electromyography based wearable technology for upper extremity function rehabilitation: A review. Journal of Hand Therapy, 2020, 33, 180-187.	1.5	14
17	A wearable neural interface for detecting and decoding attempted hand movements in a person with tetraplegia. , 2019, 2019, 1930-1933.		14
18	An Injectable Neural Stimulation Electrode Made from an Inâ€Body Curing Polymer/Metal Composite. Advanced Healthcare Materials, 2019, 8, e1900892.	7.6	32

DOUGLAS J WEBER

#	Article	IF	CITATIONS
19	Recording single- and multi-unit neuronal action potentials from the surface of the dorsal root ganglion. Scientific Reports, 2019, 9, 2786.	3.3	22
20	Neural Interfaces: An Injectable Neural Stimulation Electrode Made from an Inâ€Body Curing Polymer/Metal Composite (Adv. Healthcare Mater. 23/2019). Advanced Healthcare Materials, 2019, 8, 1970090.	7.6	1
21	What is the functional relevance of reorganization in primary motor cortex after spinal cord injury?. Neurobiology of Disease, 2019, 121, 286-295.	4.4	16
22	Effects of Synchronous Electrode Pulses on Neural Recruitment During Multichannel Microstimulation. Scientific Reports, 2018, 8, 13067.	3.3	9
23	Altered modulation of sensorimotor rhythms with chronic paralysis. Journal of Neurophysiology, 2017, 118, 2412-2420.	1.8	15
24	Human perception of electrical stimulation on the surface of somatosensory cortex. PLoS ONE, 2017, 12, e0176020.	2.5	101
25	Microstimulation of the lumbar DRG recruits primary afferent neurons in localized regions of lower limb. Journal of Neurophysiology, 2016, 116, 51-60.	1.8	25
26	MEG-based neurofeedback for hand rehabilitation. Journal of NeuroEngineering and Rehabilitation, 2015, 12, 85.	4.6	38
27	Motor-related brain activity during action observation: a neural substrate for electrocorticographic brain-computer interfaces after spinal cord injury. Frontiers in Integrative Neuroscience, 2014, 8, 17.	2.1	23
28	Microelectrode Array Recordings from the Ventral Roots in Chronically Implanted Cats. Frontiers in Neurology, 2014, 5, 104.	2.4	20
29	Chronic recruitment of primary afferent neurons by microstimulation in the feline dorsal root ganglia. Journal of Neural Engineering, 2014, 11, 036007.	3.5	23
30	Chronic tissue response to carboxymethyl cellulose based dissolvable insertion needle for ultra-small neural probes. Biomaterials, 2014, 35, 9255-9268.	11.4	170
31	High-performance neuroprosthetic control by an individual with tetraplegia. Lancet, The, 2013, 381, 557-564.	13.7	1,550
32	Real-time control of hind limb functional electrical stimulation using feedback from dorsal root ganglia recordings. Journal of Neural Engineering, 2013, 10, 026020.	3.5	54
33	Functional priorities, assistive technology, and brain-computer interfaces after spinal cord injury. Journal of Rehabilitation Research and Development, 2013, 50, 145.	1.6	197
34	An Electrocorticographic Brain Interface in an Individual with Tetraplegia. PLoS ONE, 2013, 8, e55344.	2.5	319
35	Characterization of the tissue response to functional multielectrode arrays in the feline spinal nerve. FASEB Journal, 2013, 27, 650.8.	0.5	0
36	Response of dorsal root ganglion tissue to chronically stimulated electrodes. FASEB Journal, 2012, 26, 656.10.	0.5	0

DOUGLAS J WEBER

#	Article	IF	CITATIONS
37	Sustained Growth Factor Delivery Promotes Axonal Regeneration in Long Gap Peripheral Nerve Repair. Tissue Engineering - Part A, 2011, 17, 1263-1275.	3.1	59
38	Multielectrode array recordings of bladder and perineal primary afferent activity from the sacral dorsal root ganglia. Journal of Neural Engineering, 2011, 8, 056010.	3.5	39
39	Limb-State Information Encoded by Peripheral and Central Somatosensory Neurons: Implications for an Afferent Interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19, 501-513.	4.9	88
40	Single- and multi-unit activity recorded from the surface of the dorsal root ganglia with non-penetrating electrode arrays. , 2011, 2011, 6713-6.		12
41	Cyclic Functional Electrical Stimulation Does Not Enhance Gains in Hand Grasp Function When Used as an Adjunct to OnabotulinumtoxinA and Task Practice Therapy: A Single-Blind, Randomized Controlled Pilot Study. Archives of Physical Medicine and Rehabilitation, 2010, 91, 679-686.	0.9	28
42	Neural Interface Technology for Rehabilitation: Exploiting and Promoting Neuroplasticity. Physical Medicine and Rehabilitation Clinics of North America, 2010, 21, 157-178.	1.3	175