
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7076670/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emulsion Templated Porous Poly(thiol-enes): Influence of Photopolymerisation, Emulsion Composition, and Phase Behaviour on the Porous Structure and Morphology. Polymers, 2022, 14, 1338.	2.0	6
2	Reusable Pd-PolyHIPE for Suzuki–Miyaura Coupling. ACS Omega, 2022, 7, 12610-12616.	1.6	4
3	Sustainable ultrasound-assisted extraction of valuable phenolics from inflorescences of Helichrysum arenarium L. using natural deep eutectic solvents. Industrial Crops and Products, 2021, 160, 113102.	2.5	34
4	Surface Modification of Hypercrosslinked Vinylbenzyl Chloride PolyHIPEs by Grafting via RAFT. Macromolecular Chemistry and Physics, 2021, 222, 2000381.	1.1	10
5	Porous Polymers from High Internal Phase Emulsions as Scaffolds for Biological Applications. Polymers, 2021, 13, 1786.	2.0	40
6	Non-invasive determination of ionizable ligand group density on high internal phase emulsion derived polymer. Journal of Chromatography A, 2021, 1652, 462077.	1.8	6
7	Influence of Functional Group Concentration on Hypercrosslinking of Poly(vinylbenzyl chloride) PolyHIPEs: Upgrading Macroporosity with Nanoporosity. Polymers, 2021, 13, 2721.	2.0	5
8	Hierarchically Porous Microspheres by Thiol-ene Photopolymerization of High Internal Phase Emulsions-in-Water Colloidal Systems. Polymers, 2021, 13, 3366.	2.0	7
9	Thiol–Ene Cross-linking of Poly(ethylene glycol) within High Internal Phase Emulsions: Degradable Hydrophilic PolyHIPEs for Controlled Drug Release. Macromolecules, 2021, 54, 10370-10380.	2.2	16
10	Hierarchically porous poly(glycidyl methacrylate) through hard sphere and high internal phase emulsion templating. Polymer, 2020, 209, 123064.	1.8	9
11	Emulsion templated hydrophilic polymethacrylates. Morphological features, water and dye absorption. Reactive and Functional Polymers, 2020, 149, 104515.	2.0	18
12	Choline Chloride Based Natural Deep Eutectic Solvents as Extraction Media for Extracting Phenolic Compounds from Chokeberry (Aronia melanocarpa). Molecules, 2020, 25, 1619.	1.7	39
13	Post Polymerisation Hypercrosslinking with Emulsion Templating for Hierarchical and Multi-Level Porous Polymers. Acta Chimica Slovenica, 2020, 67, 349-360.	0.2	14
14	Post Polymerisation Hypercrosslinking with Emulsion Templating for Hierarchical and Multi-Level Porous Polymers. Acta Chimica Slovenica, 2020, 67, 349-360.	0.2	1
15	In situ hyper-cross-linking of glycidyl methacrylate–based polyHIPEs through the amine-enriched high internal phase emulsions. Colloid and Polymer Science, 2019, 297, 239-247.	1.0	10
16	Macroporous titania monoliths from emulsion templated composites. Colloid and Polymer Science, 2019, 297, 799-807.	1.0	6
17	Influence of nanoparticles and antioxidants on mechanical properties of titania/polydicyclopentadiene polyHIPEs: A statistical approach. Journal of Applied Polymer Science, 2019, 136, 46913.	1.3	22
18	Multiple‣evel Porous Polymer Monoliths with Interconnected Cellular Topology Prepared by Combining Hard Sphere and Emulsion Templating for Use in Bone Tissue Engineering. Macromolecular Bioscience, 2018, 18, 1700306.	2.1	23

#	Article	IF	CITATIONS
19	Influence of Topology of Highly Porous Methacrylate Polymers on their Mechanical Properties. Macromolecular Materials and Engineering, 2018, 303, 1700337.	1.7	9
20	Novel hypercrosslinking approach toward high surface area functional 2-hydroxyethyl methacrylate-based polyHIPEs. Reactive and Functional Polymers, 2018, 132, 51-59.	2.0	20
21	Preparation of molecularly imprinted copoly(acrylic acid-divinylbenzene) for extraction of environmentally relevant sertraline residues. Reactive and Functional Polymers, 2018, 131, 378-383.	2.0	4
22	Influence of titania on the morphological and mechanical properties of 1,3-butanediol dimethacrylate based polyHIPE composites. Reactive and Functional Polymers, 2018, 130, 8-15.	2.0	20
23	Poly(4-vinylpyridine) polyHIPEs as catalysts for cycloaddition click reaction. Polymer, 2017, 126, 402-407.	1.8	38
24	Selectfluor TM on a PolyHIPE Material as Regenerative and Reusable Polymerâ€Supported Electrophilic Fluorinating Agent. Advanced Synthesis and Catalysis, 2017, 359, 584-589.	2.1	12
25	Photocatalytic Activity of Titania/Polydicyclopentadiene PolyHIPE Composites. Macromolecular Materials and Engineering, 2017, 302, 1700091.	1.7	23
26	Microcellular open porous polyester membranes from thiol-ene polymerisations of high internal phase emulsions. Designed Monomers and Polymers, 2016, 19, 577-583.	0.7	11
27	Polyester type polyHIPE scaffolds with an interconnected porous structure for cartilage regeneration. Scientific Reports, 2016, 6, 28695.	1.6	60
28	Influence of Al(OH) ₃ nanoparticles on the mechanical and fire resistance properties of poly(methyl methacrylate) nanocomposites. Polymer Composites, 2016, 37, 1659-1666.	2.3	14
29	Macroporous alumina with cellular interconnected morphology from emulsion templated polymer composite precursors. Journal of the European Ceramic Society, 2016, 36, 1045-1051.	2.8	12
30	Separation of heavy metals from water by functionalized glycidyl methacrylate poly (high internal) Tj ETQq0 0 0	rgBT/Ove 1.8	rlock 10 Tf 50
31	Two-step syneretic formation of highly porous morphology during copolymerization of hydroxyethyl methacrylate and ethylene glycol dimethylacrylate. Materials Today Communications, 2016, 7, 16-21.	0.9	5
32	Tailoring the mechanical and thermal properties of dicyclopentadiene polyHIPEs with the use of a comonomer. EXPRESS Polymer Letters, 2015, 9, 344-353.	1.1	21
33	Microcellular Open Porous Monoliths for Cell Growth by Thiol-Ene Polymerization of Low-Toxicity Monomers in High Internal Phase Emulsions. Macromolecular Bioscience, 2015, 15, 253-261.	2.1	33
34	Anthocyanins in purple and blue wheat grains and in resulting bread: quantity, composition, and thermal stability. International Journal of Food Sciences and Nutrition, 2015, 66, 514-519.	1.3	54
35	Monolithic Magneto-Optical Nanocomposites of Barium Hexaferrite Platelets in PMMA. Scientific Reports, 2015, 5, 11395.	1.6	33
36	Tailoring morphological features of cross-linked emulsion-templated poly(glycidyl methacrylate). Designed Monomers and Polymers, 2015, 18, 698-703.	0.7	13

#	Article	IF	CITATIONS
37	Post polymerisation hypercrosslinking of styrene/divinylbenzene poly(HIPE)s: Creating micropores within macroporous polymer. Polymer, 2014, 55, 410-415.	1.8	54
38	PolyHIPEs from Methyl methacrylate: Hierarchically structured microcellular polymers with exceptional mechanical properties. Polymer, 2014, 55, 4420-4424.	1.8	48
39	Glycidyl methacrylate and ethylhexyl acrylate based polyHIPE monoliths: Morphological, mechanical and chromatographic properties. Reactive and Functional Polymers, 2014, 78, 32-37.	2.0	54
40	On the mechanical properties of HIPE templated macroporous poly(dicyclopentadiene) prepared with low surfactant amounts. Journal of Materials Chemistry A, 2013, 1, 487-490.	5.2	56
41	Estimation of methacrylate monolith binding capacity from pressure drop data. Journal of Chromatography A, 2013, 1272, 50-55.	1.8	23
42	Hierarchically Porous Materials from Layerâ€byâ€Layer Photopolymerization of High Internal Phase Emulsions. Macromolecular Rapid Communications, 2013, 34, 938-943.	2.0	68
43	PolyHIPEs from Divinyl Adipate: Preparation and Degradability. Macromolecular Chemistry and Physics, 2013, 214, 2528-2533.	1.1	2
44	Crosslinked Poly(2-Hydroxyethyl Methacrylate) by Emulsion Templating: Influence of Crosslinker on Microcellular Structure. Journal of Polymers and the Environment, 2012, 20, 1095-1102.	2.4	17
45	High Internal Phase Emulsion Templating – A Path To Hierarchically Porous Functional Polymers. Macromolecular Rapid Communications, 2012, 33, 1731-1746.	2.0	276
46	Ring opening metathesispolymerisation of emulsion templated dicyclopentadiene giving open porous materials with excellent mechanical properties. Polymer Chemistry, 2012, 3, 325-328.	1.9	70
47	Methacrylic acid microcellular highly porous monoliths: Preparation and functionalisation. Reactive and Functional Polymers, 2012, 72, 221-226.	2.0	24
48	Responsive Poly(acrylic acid) and Poly(<i>N</i> â€isopropylacrylamide) Monoliths by High Internal Phase Emulsion (HIPE) Templating. Macromolecular Chemistry and Physics, 2011, 212, 2151-2158.	1.1	47
49	Ultraâ€High Surface Area Functional Porous Polymers by Emulsion Templating and Hypercrosslinking: Efficient Nucleophilic Catalyst Supports. Chemistry - A European Journal, 2010, 16, 2350-2354.	1.7	138
50	Amine Functionalisations of Glycidyl methacrylate Based PolyHIPE Monoliths. Macromolecular Symposia, 2010, 296, 5-10.	0.4	28
51	Inherently reactive polyHIPE material from dicyclopentadiene. Chemical Communications, 2010, 46, 7504.	2.2	84
52	Macroporous monolithic poly(4-vinylbenzyl chloride) columns for organic synthesis facilitation by in situ polymerization of high internal phase emulsions. Journal of Polymer Science Part A, 2009, 47, 6726-6734.	2.5	36
53	Porogenic Solvents Influence on Morphology of 4-Vinylbenzyl Chloride Based PolyHIPEs. Macromolecules, 2008, 41, 3543-3546.	2.2	37
54	Open cellular reactive porous membranes from high internal phase emulsions. Chemical Communications, 2008, , 4481.	2.2	40

#	Article	IF	CITATIONS
55	Pressure drop characteristics of poly(high internal phase emulsion) monoliths. Journal of Chromatography A, 2007, 1144, 48-54.	1.8	48
56	2,4,6â€ŧrichlorophenyl acrylate emulsionâ€ŧemplated porous polymers (PolyHIPEs). Morphology and reactivity studies. Journal of Polymer Science Part A, 2007, 45, 4043-4053.	2.5	40
57	Aryl acrylate porous functional polymer supports from water-in-oil-in-water multiple emulsions. Polymer International, 2007, 56, 1313-1319.	1.6	36
58	Highly Porous Open-Cellular Monoliths from 2-Hydroxyethyl Methacrylate Based High Internal Phase Emulsions (HIPEs):  Preparation and Void Size Tuning. Macromolecules, 2007, 40, 8056-8060.	2.2	111
59	4-Vinylbenzyl chloride based porous spherical polymer supports derived from water-in-oil-in-water emulsions. Reactive and Functional Polymers, 2005, 65, 37-45.	2.0	70
60	Preparation and characterisation of poly(high internal phase emulsion) methacrylate monoliths and their application as separation media. Journal of Chromatography A, 2005, 1065, 69-73.	1.8	188
61	Acrylic Acid "Reversed―PolyHIPEs. Macromolecular Rapid Communications, 2005, 26, 1289-1293.	2.0	120
62	Aryl acrylate based high-internal-phase emulsions as precursors for reactive monolithic polymer supports. Journal of Polymer Science Part A, 2005, 43, 296-303.	2.5	54
63	Monolithic Scavenger Resins by Amine Functionalizations of Poly(4-vinylbenzyl) Tj ETQq1 1 0.784314 rgBT /Ove	rloçk_10 Tf	50 422 Td (