
isabelle Petit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7076644/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantitative Ubiquitylome Analysis Reveals the Specificity of RNF111/Arkadia E3 Ubiquitin Ligase for its Degradative Substrates SKI and SKIL/SnoN in TGF-β Signaling Pathway. Molecular and Cellular Proteomics, 2021, 20, 100173.	3.8	7
2	Purification of Extracellular Microvesicles Secreted by Dermal Fibroblasts. Methods in Molecular Biology, 2020, 2154, 63-72.	0.9	2
3	Single-cell RNA-seq identifies a reversible mesodermal activation in abnormally specified epithelia of p63 EEC syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17361-17370.	7.1	19
4	Extracellular Vesicles from Activated Dermal Fibroblasts Stimulate Hair Follicle Growth Through Dermal Papilla-Secreted Norrin. Stem Cells, 2019, 37, 1166-1175.	3.2	44
5	Modeling of Aniridia-Related Keratopathy by CRISPR/Cas9 Genome Editing of Human Limbal Epithelial Cells and Rescue by Recombinant PAX6 Protein. Stem Cells, 2018, 36, 1421-1429.	3.2	39
6	Induced pluripotent stem cell-derived limbal epithelial cells (LiPSC) as a cellular alternative for in vitro ocular toxicity testing. PLoS ONE, 2017, 12, e0179913.	2.5	20
7	<scp>RBM</scp> 28, a protein deficient in <scp>ANE</scp> syndrome, regulates hair follicle growth via miR‣03 and p63. Experimental Dermatology, 2015, 24, 618-622.	2.9	17
8	Pluripotent stem cells as a cellular model for skin: relevance for physiopathology, cell/gene therapy and drug screening. European Journal of Dermatology, 2015, 25, 12-17.	0.6	0
9	Abnormal neuronal differentiation and mitochondrial dysfunction in hair follicle-derived induced pluripotent stem cells of schizophrenia patients. Molecular Psychiatry, 2013, 18, 1067-1076.	7.9	205
10	Impaired epithelial differentiation of induced pluripotent stem cells from ectodermal dysplasia-related patients is rescued by the small compound APR-246/PRIMA-1 ^{MET} . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2152-2156.	7.1	69
11	Pluripotent Stem Cell Model Reveals Essential Roles for miRâ€450bâ€5p and miRâ€184 in Embryonic Corneal Lineage Specification. Stem Cells, 2012, 30, 898-909.	3.2	115
12	Induced pluripotent stem cells from hair follicles as a cellular model for neurodevelopmental disorders. Stem Cell Research, 2012, 8, 134-140.	0.7	64
13	Enhanced c-Met activity promotes G-CSF–induced mobilization of hematopoietic progenitor cells via ROS signaling. Blood, 2011, 117, 419-428.	1.4	114
14	PD1/PD-L1 dependent immunosuppression by huiPS-derived cell population. Journal of Translational Medicine, 2011, 9, P31.	4.4	0
15	Can inhibition of the SDF-1/CXCR4 axis eradicate acute leukemia?. Seminars in Cancer Biology, 2010, 20, 178-185.	9.6	54
16	Engraftment and Reconstitution of Hematopoiesis Is Dependent on VEGFR2-Mediated Regeneration of Sinusoidal Endothelial Cells. Cell Stem Cell, 2009, 4, 263-274.	11.1	548
17	MT1-MMP and RECK are involved in human CD34+ progenitor cell retention, egress, and mobilization. Journal of Clinical Investigation, 2009, 119, 492-503.	8.2	94
18	The CXCR4 antagonist AMD3100 impairs survival of human AML cells and induces their differentiation. Leukemia, 2008, 22, 2151-2158.	7.2	93

ISABELLE PETIT

#	Article	IF	CITATIONS
19	CD45 regulates retention, motility, and numbers of hematopoietic progenitors, and affects osteoclast remodeling of metaphyseal trabecules. Journal of Experimental Medicine, 2008, 205, 2381-2395.	8.5	78
20	The microtubule-targeting agent CA4P regresses leukemic xenografts by disrupting interaction with vascular cells and mitochondrial-dependent cell death. Blood, 2008, 111, 1951-1961.	1.4	64
21	The CXCR4 Antagonist AMD3100 Impairs Survival of AML Cells and Induces Their Differentiation Blood, 2008, 112, 1621-1621.	1.4	0
22	Does N-Cadherin Regulate Interaction of Hematopoietic Stem Cells with Their Niches?. Cell Stem Cell, 2007, 1, 127-129.	11.1	12
23	The SDF-1–CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis. Trends in Immunology, 2007, 28, 299-307.	6.8	518
24	A novel family of slitrk genes is expressed on hematopoietic stem cells and leukemias. Leukemia, 2007, 21, 824-827.	7.2	21
25	MT1-MMP and RECK Inversely Regulate Hematopoietic Progenitor Cell Egress Blood, 2007, 110, 1259-1259.	1.4	0
26	cAMP-induced PKCζ activation increases functional CXCR4 expression on human CD34+ hematopoietic progenitors. Blood, 2006, 107, 870-879.	1.4	82
27	Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nature Medicine, 2006, 12, 557-567.	30.7	616
28	Functional CXCR4-Expressing Microparticles and SDF-1 Correlate with Circulating Acute Myelogenous Leukemia Cells. Cancer Research, 2006, 66, 11013-11020.	0.9	60
29	Thrombospondins deployed by thrombopoietic cells determine angiogenic switch and extent of revascularization. Journal of Clinical Investigation, 2006, 116, 3277-3291.	8.2	95
30	The GEF Lsc Regulates Hematopoietic Stem Cell Motility, Mobilization and Recruitment Blood, 2006, 108, 1346-1346.	1.4	3
31	The Tyrosine Kinase c-Met Is Selectively Expressed on Motile Hematopoietic Progenitors Following G-CSF Administration and Promotes Mobilization by Regulating Stem Cell Niche Components Blood, 2006, 108, 3376-3376.	1.4	0
32	Motility, proliferation, and egress to the circulation of human AML cells are elastase dependent in NOD/SCID chimeric mice. Blood, 2005, 106, 2120-2127.	1.4	31
33	Cycling G1 CD34+/CD38+Cells Potentiate the Motility and Engraftment of Quiescent G0 CD34+/CD38â^'/lowSevere Combined Immunodeficiency Repopulating Cells. Stem Cells, 2005, 23, 561-574.	3.2	16
34	Atypical PKC-ζ regulates SDF-1–mediated migration and development of human CD34+ progenitor cells. Journal of Clinical Investigation, 2005, 115, 168-176.	8.2	127
35	Atypical PKC-ζ regulates SDF-1–mediated migration and development of human CD34+ progenitor cells. Journal of Clinical Investigation, 2005, 115, 168-176.	8.2	61
36	Correlation between CXCR4 and Homing or Engraftment of Acute Myelogenous Leukemia. Cancer Research, 2004, 64, 6832-6833.	0.9	16

ISABELLE PETIT

#	Article	IF	CITATIONS
37	CXCR4 Regulates Migration and Development of Human Acute Myelogenous Leukemia Stem Cells in Transplanted NOD/SCID Mice. Cancer Research, 2004, 64, 2817-2824.	0.9	322
38	Overexpression of CXCR4 on human CD34+ progenitors increases their proliferation, migration, and NOD/SCID repopulation. Blood, 2004, 103, 2942-2949.	1.4	219
39	Membrane Type 1-Matrix Metalloproteinase Is Directly Involved in G-CSF Induced Human Hematopoietic Stem and Progenitor Cell Mobilization Blood, 2004, 104, 2675-2675.	1.4	7
40	Motility, Proliferation and Egress of Human AML Cells in Transplanted NOD/SCID Mice Are Regulated by Membrane Bound and Secreted Elastase Blood, 2004, 104, 3379-3379.	1.4	0
41	Stem Cell Mobilization. Hematology American Society of Hematology Education Program, 2003, 2003, 419-437.	2.5	186
42	Human CD34+CXCR4â^' sorted cells harbor intracellular CXCR4, which can be functionally expressed and provide NOD/SCID repopulation. Blood, 2002, 100, 2778-2786.	1.4	147
43	Current understanding of stem cell mobilization. Experimental Hematology, 2002, 30, 973-981.	0.4	734
44	TGF-β1 enhances SDF-1α-induced chemotaxis and homing of naive T cells by up-regulating CXCR4 expression and downstream cytoskeletal effector molecules. European Journal of Immunology, 2002, 32, 193-202.	2.9	71
45	G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nature Immunology, 2002, 3, 687-694.	14.5	1,215
46	Rapid and efficient homing of human CD34+CD38â^'/lowCXCR4+stem and progenitor cells to the bone marrow and spleen of NOD/SCID and NOD/SCID/B2mnull mice. Blood, 2001, 97, 3283-3291.	1.4	283
47	The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34+ cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood, 2000, 95, 3289-3296.	1.4	685
48	Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. Journal of Clinical Investigation, 2000, 106, 1331-1339.	8.2	516
49	The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34+ cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood, 2000, 95, 3289-3296.	1.4	26
50	Dependence of Human Stem Cell Engraftment and Repopulation of NOD/SCID Mice on CXCR4. Science, 1999, 283, 845-848.	12.6	1,598
51	The chemokine SDF-1 stimulates integrin-mediated arrest of CD34+ cells on vascular endothelium under shear flow. Journal of Clinical Investigation, 1999, 104, 1199-1211.	8.2	479
52	An approach to understanding the mechanisms of poliovirus persistence in infected cells of neural or non-neural origin. Clinical and Diagnostic Virology, 1998, 9, 107-113.	1.7	19