Long Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7076538/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i><scp>FLOURY ENDOSPERM</scp>6</i> encodes a <scp>CBM</scp> 48 domainâ€containing protein involved in compound granule formation and starch synthesis in rice endosperm. Plant Journal, 2014, 77, 917-930.	2.8	185
2	Characterization and comparative study of starches from seven purple sweet potatoes. Food Hydrocolloids, 2018, 80, 168-176.	5.6	104
3	<i>>FLOURY ENDOSPERM7</i> encodes a regulator of starch synthesis and amyloplast development essential for peripheral endosperm development in rice. Journal of Experimental Botany, 2016, 67, 633-647.	2.4	91
4	Comparison of structural and functional properties of starches from five fruit kernels. Food Chemistry, 2018, 257, 75-82.	4.2	85
5	Molecular structure and enzymatic hydrolysis properties of starches from high-amylose maize inbred lines and their hybrids. Food Hydrocolloids, 2016, 58, 246-254.	5.6	71
6	Structural and functional properties of starches from root tubers of white, yellow, and purple sweet potatoes. Food Hydrocolloids, 2019, 89, 829-836.	5.6	71
7	The relationship between enzyme hydrolysis and the components of rice starches with the same genetic background and amylopectin structure but different amylose contents. Food Hydrocolloids, 2018, 84, 406-413.	5.6	46
8	Evaluation of the Molecular Structural Parameters of Normal Rice Starch and Their Relationships with Its Thermal and Digestion Properties. Molecules, 2017, 22, 1526.	1.7	36
9	Comparison of Physicochemical Properties of Starches from Flesh and Peel of Green Banana Fruit. Molecules, 2018, 23, 2312.	1.7	32
10	Effects of molecular compositions on crystalline structure and functional properties of rice starches with different amylopectin extra-long chains. Food Hydrocolloids, 2019, 88, 137-145.	5.6	31
11	Effects of Different Isolation Media on Structural and Functional Properties of Starches from Root Tubers of Purple, Yellow and White Sweet Potatoes. Molecules, 2018, 23, 2135.	1.7	30
12	Relationships between transparency, amylose content, starch cavity, and moisture of brown rice kernels. Journal of Cereal Science, 2019, 90, 102854.	1.8	25
13	Young Seedling Stripe1 encodes a chloroplast nucleoid-associated protein required for chloroplast development in rice seedlings. Planta, 2017, 245, 45-60.	1.6	22
14	Comparison of Physicochemical Properties of Starches from Nine Chinese Chestnut Varieties. Molecules, 2018, 23, 3248.	1.7	22
15	A Novel Mutation of OsPPDKB, Encoding Pyruvate Orthophosphate Dikinase, Affects Metabolism and Structure of Starch in the Rice Endosperm. International Journal of Molecular Sciences, 2018, 19, 2268.	1.8	22
16	The CBM48 domain-containing protein FLO6 regulates starch synthesis by interacting with SSIVb and GBSS in rice. Plant Molecular Biology, 2022, 108, 343-361.	2.0	20
17	Spatiotemporal accumulation and characteristics of starch in developing maize caryopses. Plant Physiology and Biochemistry, 2018, 130, 493-500.	2.8	15
18	Effects of nitrogen level on structural and functional properties of starches from different colored-fleshed root tubers of sweet potato. International Journal of Biological Macromolecules, 2020, 164, 3235-3242.	3.6	14

LONG ZHANG

#	Article	IF	CITATIONS
19	Inhibition of starch branching enzymes in waxy rice increases the proportion of long branch-chains of amylopectin resulting in the comb-like profiles of starch granules. Plant Science, 2018, 277, 177-187.	1.7	13
20	Structural, thermal, and hydrolysis properties of large and small granules from C-type starches of four Chinese chestnut varieties. International Journal of Biological Macromolecules, 2019, 137, 712-720.	3.6	13
21	Starch Components, Starch Properties and Appearance Quality of Opaque Kernels from Rice Mutants. Molecules, 2019, 24, 4580.	1.7	11
22	Changes in kernel properties, inÂsitu gelatinization, and physicochemical properties of waxy rice with inhibition of starch branching enzyme during cooking. International Journal of Food Science and Technology, 2019, 54, 2780-2791.	1.3	9
23	Effects of inhibiting starch branching enzymes on molecular and crystalline structures of starches from endosperm different regions in rice. Food Chemistry, 2019, 301, 125271.	4.2	8