
## Anthony V Moorman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7076425/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic<br>significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated<br>in the United Kingdom Medical Research Council trials. Blood, 2010, 116, 354-365.                                       | 1.4  | 1,661     |
| 2  | Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature, 2011, 469, 356-361.                                                                                                                                                                                                                       | 27.8 | 734       |
| 3  | Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): analysis of cytogenetic data from patients treated on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology Group (ECOG) 2993 trial. Blood, 2007, 109, 3189-3197.                                                  | 1.4  | 655       |
| 4  | Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid<br>leukaemia: a meta-analysis of individual patient data from randomised controlled trials. Lancet<br>Oncology, The, 2014, 15, 986-996.                                                                                         | 10.7 | 549       |
| 5  | Deregulated expression of cytokine receptor gene, CRLF2, is involved in lymphoid transformation in<br>B-cell precursor acute lymphoblastic leukemia. Blood, 2009, 114, 2688-2698.                                                                                                                                                | 1.4  | 445       |
| 6  | T-cell acute lymphoblastic leukemia in adults: clinical features, immunophenotype, cytogenetics, and outcome from the large randomized prospective trial (UKALL XII/ECOG 2993). Blood, 2009, 114, 5136-5145.                                                                                                                     | 1.4  | 346       |
| 7  | Prognostic effect of chromosomal abnormalities in childhood B-cell precursor acute lymphoblastic<br>leukaemia: results from the UK Medical Research Council ALL97/99 randomised trial. Lancet Oncology,<br>The, 2010, 11, 429-438.                                                                                               | 10.7 | 338       |
| 8  | UKALLXII/ECOG2993: addition of imatinib to a standard treatment regimen enhances long-term outcomes in Philadelphia positive acute lymphoblastic leukemia. Blood, 2014, 123, 843-850.                                                                                                                                            | 1.4  | 321       |
| 9  | Effect of mitoxantrone on outcome of children with first relapse of acute lymphoblastic leukaemia<br>(ALL R3): an open-label randomised trial. Lancet, The, 2010, 376, 2009-2017.                                                                                                                                                | 13.7 | 282       |
| 10 | Augmented post-remission therapy for a minimal residual disease-defined high-risk subgroup of<br>children and young people with clinical standard-risk and intermediate-risk acute lymphoblastic<br>leukaemia (UKALL 2003): a randomised controlled trial. Lancet Oncology, The, 2014, 15, 809-818.                              | 10.7 | 270       |
| 11 | Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia.<br>Nature, 2014, 508, 98-102.                                                                                                                                                                                                        | 27.8 | 261       |
| 12 | Prospective outcome data on 267 unselected adult patients with Philadelphia chromosome–positive<br>acute lymphoblastic leukemia confirms superiority of allogeneic transplantation over chemotherapy<br>in the pre-imatinib era: results from the International ALL Trial MRC UKALLXII/ECOG2993. Blood, 2009,<br>113, 4489-4496. | 1.4  | 257       |
| 13 | Cytogenetics of Childhood Acute Myeloid Leukemia: United Kingdom Medical Research Council<br>Treatment Trials AML 10 and 12. Journal of Clinical Oncology, 2010, 28, 2674-2681.                                                                                                                                                  | 1.6  | 256       |
| 14 | Variation in CDKN2A at 9p21.3 influences childhood acute lymphoblastic leukemia risk. Nature<br>Genetics, 2010, 42, 492-494.                                                                                                                                                                                                     | 21.4 | 248       |
| 15 | The genetic basis and cell of origin of mixed phenotype acute leukaemia. Nature, 2018, 562, 373-379.                                                                                                                                                                                                                             | 27.8 | 236       |
| 16 | Polymorphism in glutathione <i>S</i> -transferase P1 is associated with susceptibility to<br>chemotherapy-induced leukemia. Proceedings of the National Academy of Sciences of the United States<br>of America, 2001, 98, 11592-11597.                                                                                           | 7.1  | 233       |
| 17 | RAS mutation in acute myeloid leukemia is associated with distinct cytogenetic subgroups but does not influence outcome in patients younger than 60 years. Blood, 2005, 106, 2113-2119.                                                                                                                                          | 1.4  | 230       |
| 18 | Prognostic factor analysis of the survival of elderly patients with AML in the MRC AML11 and LRF AML14 trials. British Journal of Haematology, 2009, 145, 598-605.                                                                                                                                                               | 2.5  | 228       |

| #  | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukaemia. Nature<br>Communications, 2016, 7, 13331.                                                                                                                        | 12.8 | 218       |
| 20 | A population-based cytogenetic study of adults with acute lymphoblastic leukemia. Blood, 2010, 115, 206-214.                                                                                                                                         | 1.4  | 216       |
| 21 | Prognosis of children with acute lymphoblastic leukemia (ALL) and intrachromosomal amplification of chromosome 21 (iAMP21). Blood, 2007, 109, 2327-2330.                                                                                             | 1.4  | 200       |
| 22 | Outcome for children and young people with <scp>E</scp> arly <scp>T</scp> â€cell precursor acute<br>lymphoblastic leukaemia treated on a contemporary protocol, <scp>UKALL</scp> 2003. British Journal<br>of Haematology, 2014, 166, 421-424.        | 2.5  | 196       |
| 23 | Genomics and drug profiling of fatal TCF3-HLFâ^'positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options. Nature Genetics, 2015, 47, 1020-1029.                                                          | 21.4 | 190       |
| 24 | Acute lymphoblastic leukemia in children with Down syndrome: a retrospective analysis from the<br>Ponte di Legno study group. Blood, 2014, 123, 70-77.                                                                                               | 1.4  | 189       |
| 25 | Three distinct subgroups of hypodiploidy in acute lymphoblastic leukaemia. British Journal of<br>Haematology, 2004, 125, 552-559.                                                                                                                    | 2.5  | 184       |
| 26 | A novel integrated cytogenetic and genomic classification refines risk stratification in pediatric acute<br>lymphoblastic leukemia. Blood, 2014, 124, 1434-1444.                                                                                     | 1.4  | 178       |
| 27 | An international study of intrachromosomal amplification of chromosome 21 (iAMP21): cytogenetic characterization and outcome. Leukemia, 2014, 28, 1015-1021.                                                                                         | 7.2  | 175       |
| 28 | The clinical relevance of chromosomal and genomic abnormalities in B-cell precursor acute lymphoblastic leukaemia. Blood Reviews, 2012, 26, 123-135.                                                                                                 | 5.7  | 170       |
| 29 | A comprehensive analysis of the CDKN2A gene in childhood acute lymphoblastic leukemia reveals genomic deletion, copy number neutral loss of heterozygosity, and association with specific cytogenetic subgroups. Blood, 2009, 113, 100-107.          | 1.4  | 167       |
| 30 | New and emerging prognostic and predictive genetic biomarkers in B-cell precursor acute<br>lymphoblastic leukemia. Haematologica, 2016, 101, 407-416.                                                                                                | 3.5  | 167       |
| 31 | Outcome heterogeneity in childhood high-hyperdiploid acute lymphoblastic leukemia. Blood, 2003, 102, 2756-2762.                                                                                                                                      | 1.4  | 165       |
| 32 | Outcomes in older adults with acute lymphoblastic leukaemia ( <scp>ALL</scp> ): results from the<br>international <scp>MRC UKALL XII</scp> / <scp>ECOG</scp> 2993 trial. British Journal of Haematology,<br>2012, 157, 463-471.                      | 2.5  | 161       |
| 33 | Amplification of AML1 on a duplicated chromosome 21 in acute lymphoblastic leukemia: a study of 20 cases. Leukemia, 2003, 17, 547-553.                                                                                                               | 7.2  | 153       |
| 34 | Targeted sequencing identifies associations between IL7R-JAK mutations and epigenetic modulators in<br>T-cell acute lymphoblastic leukemia. Haematologica, 2015, 100, 1301-1310.                                                                     | 3.5  | 151       |
| 35 | Minimal residual disease is a significant predictor of treatment failure in non Tâ€lineage adult acute<br>lymphoblastic leukaemia: final results of the international trial UKALL XII/ECOG2993. British Journal of<br>Haematology, 2010, 148, 80-89. | 2.5  | 147       |
| 36 | Genotype-Specific Minimal Residual Disease Interpretation Improves Stratification in Pediatric Acute<br>Lymphoblastic Leukemia. Journal of Clinical Oncology, 2018, 36, 34-43.                                                                       | 1.6  | 147       |

| #  | Article                                                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Genes commonly deleted in childhood B-cell precursor acute lymphoblastic leukemia: association with cytogenetics and clinical features. Haematologica, 2013, 98, 1081-1088.                                                                                                                                       | 3.5 | 139       |
| 38 | Interphase molecular cytogenetic screening for chromosomal abnormalities of prognostic<br>significance in childhood acute lymphoblastic leukaemia: a UK Cancer Cytogenetics Group Study.<br>British Journal of Haematology, 2005, 129, 520-530.                                                                   | 2.5 | 137       |
| 39 | Demographic, clinical, and outcome features of children with acute lymphoblastic leukemia and CRLF2 deregulation: results from the MRC ALL97 clinical trial. Blood, 2011, 117, 2129-2136.                                                                                                                         | 1.4 | 133       |
| 40 | <i>IGH@</i> Translocations, <i>CRLF2</i> Deregulation, and Microdeletions in Adolescents and Adults With Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 2012, 30, 3100-3108.                                                                                                                         | 1.6 | 120       |
| 41 | Outcome after first relapse in childhood acute lymphoblastic leukaemia - lessons from the United<br>Kingdom R2 trial. British Journal of Haematology, 2005, 130, 67-75.                                                                                                                                           | 2.5 | 117       |
| 42 | Risk-Directed Treatment Intensification Significantly Reduces the Risk of Relapse Among Children and Adolescents With Acute Lymphoblastic Leukemia and Intrachromosomal Amplification of Chromosome 21: A Comparison of the MRC ALL97/99 and UKALL2003 Trials. Journal of Clinical Oncology, 2013, 31, 3389-3396. | 1.6 | 111       |
| 43 | Genomic characterization implicates iAMP21 as a likely primary genetic event in childhood B-cell precursor acute lymphoblastic leukemia. Blood, 2011, 117, 6848-6855.                                                                                                                                             | 1.4 | 108       |
| 44 | EBF1-PDGFRB fusion in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL): genetic profile and clinical implications. Blood, 2016, 127, 2214-2218.                                                                                                                                                  | 1.4 | 108       |
| 45 | Amplification of AML1 in acute lymphoblastic leukemia is associated with a poor outcome. Leukemia, 2003, 17, 2249-2250.                                                                                                                                                                                           | 7.2 | 103       |
| 46 | Integration of genetic and clinical risk factors improves prognostication in relapsed childhood B-cell precursor acute lymphoblastic leukemia. Blood, 2016, 128, 911-922.                                                                                                                                         | 1.4 | 103       |
| 47 | Sex ratios and the risks of haematological malignancies. British Journal of Haematology, 2002, 118, 1071-1077.                                                                                                                                                                                                    | 2.5 | 102       |
| 48 | Outcome in children with Down's syndrome and acute lymphoblastic leukemia: role of IKZF1 deletions and CRLF2 aberrations. Leukemia, 2012, 26, 2204-2211.                                                                                                                                                          | 7.2 | 91        |
| 49 | <i>IGH</i> @ Translocations Are Prevalent in Teenagers and Young Adults With Acute Lymphoblastic<br>Leukemia and Are Associated With a Poor Outcome. Journal of Clinical Oncology, 2014, 32, 1453-1462.                                                                                                           | 1.6 | 87        |
| 50 | Variable breakpoints target <i>PAX5</i> in patients with dicentric chromosomes: A model for the basis<br>of unbalanced translocations in cancer. Proceedings of the National Academy of Sciences of the<br>United States of America, 2008, 105, 17050-17054.                                                      | 7.1 | 77        |
| 51 | IKZF1 deletions in pediatric acute lymphoblastic leukemia: still a poor prognostic marker?. Blood, 2020,<br>135, 252-260.                                                                                                                                                                                         | 1.4 | 77        |
| 52 | Use of Minimal Residual Disease Assessment to Redefine Induction Failure in Pediatric Acute<br>Lymphoblastic Leukemia. Journal of Clinical Oncology, 2017, 35, 660-667.                                                                                                                                           | 1.6 | 76        |
| 53 | International cooperative study identifies treatment strategy in childhood ambiguous lineage<br>leukemia. Blood, 2018, 132, 264-276.                                                                                                                                                                              | 1.4 | 70        |
| 54 | Efficacy and toxicity of a paediatric protocol in teenagers and young adults with Philadelphia<br>chromosome negative acute lymphoblastic leukaemia: results from <scp>UKALL</scp> 2003. British<br>Journal of Haematology, 2016, 172, 439-451.                                                                   | 2.5 | 68        |

| #  | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Molecular cytogenetic characterization ofTCF3 (E2A)/19p13.3 rearrangements in B-cell precursor acute<br>lymphoblastic leukemia. Genes Chromosomes and Cancer, 2007, 46, 478-486.                                                                 | 2.8  | 67        |
| 56 | Impact of NOTCH1/FBXW7 mutations on outcome in pediatric T-cell acute lymphoblastic leukemia patients treated on the MRC UKALL 2003 trial. Leukemia, 2013, 27, 41-47.                                                                            | 7.2  | 66        |
| 57 | Characterization of leukemias with ETV6-ABL1 fusion. Haematologica, 2016, 101, 1082-1093.                                                                                                                                                        | 3.5  | 66        |
| 58 | Heterogeneous patterns of amplification of the NUP214-ABL1 fusion gene in T-cell acute lymphoblastic leukemia. Leukemia, 2009, 23, 125-133.                                                                                                      | 7.2  | 65        |
| 59 | Intrachromosomal amplification of chromosome 21 (iAMP21) may arise from a breakage–fusion–bridge<br>cycle. Genes Chromosomes and Cancer, 2007, 46, 318-326.                                                                                      | 2.8  | 64        |
| 60 | Karyotype and age in acute myeloid leukemia Cancer Genetics and Cytogenetics, 2001, 126, 155-161.                                                                                                                                                | 1.0  | 59        |
| 61 | t(6;14)(p22;q32): a new recurrent IGH@ translocation involving ID4 in B-cell precursor acute<br>lymphoblastic leukemia (BCP-ALL). Blood, 2008, 111, 387-391.                                                                                     | 1.4  | 59        |
| 62 | Molecular classification improves risk assessment in adult <i>BCR-ABL1–</i> negative B-ALL. Blood, 2021, 138, 948-958.                                                                                                                           | 1.4  | 59        |
| 63 | The complex genomic profile of <i>ETV6â€RUNX1</i> positive acute lymphoblastic leukemia highlights a recurrent deletion of <i>TBL1XR1</i> . Genes Chromosomes and Cancer, 2008, 47, 1118-1125.                                                   | 2.8  | 58        |
| 64 | Genome-wide association study identifies susceptibility loci for B-cell childhood acute lymphoblastic<br>leukemia. Nature Communications, 2018, 9, 1340.                                                                                         | 12.8 | 58        |
| 65 | Identification of four novel associations for B-cell acute lymphoblastic leukaemia risk. Nature<br>Communications, 2019, 10, 5348.                                                                                                               | 12.8 | 58        |
| 66 | Amplification of the ABL gene in T-cell acute lymphoblastic leukemia. Leukemia, 2004, 18, 1153-1156.                                                                                                                                             | 7.2  | 57        |
| 67 | A novel translocation, t(14;19)(q32;p13), involving IGH@ and the cytokine receptor for erythropoietin.<br>Leukemia, 2009, 23, 614-617.                                                                                                           | 7.2  | 56        |
| 68 | The clinical characteristics, therapy and outcome of 85 adults with acute lymphoblastic leukemia and t(4;11)(q21;q23)/MLL-AFF1 prospectively treated in the UKALLXII/ECOG2993 trial. Haematologica, 2013, 98, 945-952.                           | 3.5  | 54        |
| 69 | Loss of chromosomes is the primary event in near-haploid and low-hypodiploid acute lymphoblastic leukemia. Leukemia, 2013, 27, 248-250.                                                                                                          | 7.2  | 50        |
| 70 | Characterisation of the genomic landscape of <i>CRLF2</i> â€rearranged acute lymphoblastic leukemia.<br>Genes Chromosomes and Cancer, 2017, 56, 363-372.                                                                                         | 2.8  | 49        |
| 71 | Validation of the United Kingdom copy-number alteration classifier in 3239 children with B-cell precursor ALL. Blood Advances, 2019, 3, 148-157.                                                                                                 | 5.2  | 48        |
| 72 | Early response to induction is predictive of survival in childhood Philadelphia chromosome positive<br>acute lymphoblastic leukaemia: results of the Medical Research Council ALL 97 trial. British Journal of<br>Haematology, 2005, 129, 35-44. | 2.5  | 44        |

| #  | Article                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Population-based demographic study of karyotypes in 1709 patients with adult Acute Myeloid Leukemia.<br>Leukemia, 2006, 20, 444-450.                                                                                                                                    | 7.2 | 44        |
| 74 | Heterogeneous breakpoints in patients with acute lymphoblastic leukemia and the dic(9;20)(p11Â13;q11)<br>show recurrent involvement of genes at 20q11.21. Haematologica, 2009, 94, 1164-1169.                                                                           | 3.5 | 43        |
| 75 | Temporal changes in the incidence and pattern of central nervous system relapses in children with<br>acute lymphoblastic leukaemia treated on four consecutive Medical Research Council trials,<br>1985–2001. Leukemia, 2010, 24, 450-459.                              | 7.2 | 43        |
| 76 | Hyperdiploidy with 49–65 chromosomes represents a heterogeneous cytogenetic subgroup of acute myeloid leukemia with differential outcome. Leukemia, 2014, 28, 321-328.                                                                                                  | 7.2 | 41        |
| 77 | Sequential Influences of Leukemia-Specific and Genetic Factors on P-Glycoprotein Expression in Blasts<br>from 817 Patients Entered into the National Cancer Research Network Acute Myeloid Leukemia 14 and<br>15 Trials. Clinical Cancer Research, 2007, 13, 7059-7066. | 7.0 | 40        |
| 78 | Clinical characteristics and outcomes of B-ALL with ZNF384 rearrangements: a retrospective analysis by the Ponte di Legno Childhood ALL Working Group. Leukemia, 2021, 35, 3272-3277.                                                                                   | 7.2 | 40        |
| 79 | Treatment outcome of CRLF2-rearranged childhood acute lymphoblastic leukaemia: a comparative<br>analysis of the AIEOP-BFM and UK NCRI-CCLG study groups. British Journal of Haematology, 2012, 158,<br>772-777.                                                         | 2.5 | 39        |
| 80 | Epigenetic inactivation of TWIST2 in acute lymphoblastic leukemia modulates proliferation, cell survival and chemosensitivity. Haematologica, 2012, 97, 371-378.                                                                                                        | 3.5 | 38        |
| 81 | Outcome of Down syndrome associated acute lymphoblastic leukaemia treated on a contemporary protocol. British Journal of Haematology, 2014, 165, 552-555.                                                                                                               | 2.5 | 38        |
| 82 | Probes for hidden hyperdiploidy in acute lymphoblastic leukaemia. , 1996, 16, 40-45.                                                                                                                                                                                    |     | 37        |
| 83 | Outcomes of patients with childhood B-cell precursor acute lymphoblastic leukaemia with late bone<br>marrow relapses: long-term follow-up of the ALLR3 open-label randomised trial. Lancet<br>Haematology,the, 2019, 6, e204-e216.                                      | 4.6 | 36        |
| 84 | Smoking and the risk of acute myeloid leukaemia in cytogenetic subgroups. British Journal of Cancer, 2002, 86, 60-62.                                                                                                                                                   | 6.4 | 34        |
| 85 | Outcome of Central Nervous System Relapses In Childhood Acute Lymphoblastic Leukaemia –<br>Prospective Open Cohort Analyses of the ALLR3 Trial. PLoS ONE, 2014, 9, e108107.                                                                                             | 2.5 | 34        |
| 86 | Breakpoints of variant 9;22 translocations in chronic myeloid leukemia locate preferentially in the CG-richest regions of the genome. Genes Chromosomes and Cancer, 2005, 43, 383-389.                                                                                  | 2.8 | 33        |
| 87 | Derivative chromosome 9 deletions are a significant feature of childhood Philadelphia chromosome<br>positive acute lymphoblastic leukaemia. Leukemia, 2005, 19, 564-571.                                                                                                | 7.2 | 32        |
| 88 | Outcomes of paediatric patients with B-cell acute lymphocytic leukaemia with ABL-class fusion in the pre-tyrosine-kinase inhibitor era: a multicentre, retrospective, cohort study. Lancet Haematology,the, 2021, 8, e55-e66.                                           | 4.6 | 32        |
| 89 | Adjuvant tyrosine kinase inhibitor therapy improves outcome for children and adolescents with acute<br>lymphoblastic leukaemia who have an ABLâ€class fusion. British Journal of Haematology, 2020, 191,<br>844-851.                                                    | 2.5 | 31        |
| 90 | Isochromosomes in acute lymphoblastic leukaemia: I(21q) is a significant finding. Genes Chromosomes and Cancer, 1996, 17, 21-30.                                                                                                                                        | 2.8 | 29        |

| #   | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Comparative expressed sequence hybridization studies of high-hyperdiploid childhood acute lymphoblastic leukemia. Genes Chromosomes and Cancer, 2004, 41, 191-202.                                                                              | 2.8  | 28        |
| 92  | Methylation of tumour suppressor gene promoters in the presence and absence of transcriptional<br>silencing in high hyperdiploid acute lymphoblastic leukaemia. British Journal of Haematology, 2009,<br>144, 838-847.                          | 2.5  | 27        |
| 93  | Risk factors and outcomes in children with high-risk B-cell precursor and T-cell relapsed acute<br>lymphoblastic leukaemia: combined analysis of ALLR3 and ALL-REZ BFM 2002 clinical trials. European<br>Journal of Cancer, 2021, 151, 175-189. | 2.8  | 27        |
| 94  | Epigenetic landscape correlates with genetic subtype but does not predict outcome in childhood acute lymphoblastic leukemia. Epigenetics, 2015, 10, 717-726.                                                                                    | 2.7  | 26        |
| 95  | SH2B3 inactivation through CN-LOH 12q is uniquely associated with B-cell precursor ALL with iAMP21 or other chromosome 21 gain. Leukemia, 2019, 33, 1881-1894.                                                                                  | 7.2  | 26        |
| 96  | Incidence of childhood acute lymphoblastic leukaemia in Yorkshire, UK. Lancet, The, 2001, 358, 385-387.                                                                                                                                         | 13.7 | 25        |
| 97  | t(14;19)(q32;q13): A recurrent translocation in B-cell precursor acute lymphoblastic leukemia. Genes<br>Chromosomes and Cancer, 2004, 39, 88-92.                                                                                                | 2.8  | 25        |
| 98  | Intragenic amplification of PAX5: a novel subgroup in B-cell precursor acute lymphoblastic leukemia?.<br>Blood Advances, 2017, 1, 1473-1477.                                                                                                    | 5.2  | 25        |
| 99  | A validated novel continuous prognostic index to deliver stratified medicine in pediatric acute<br>lymphoblastic leukemia. Blood, 2020, 135, 1438-1446.                                                                                         | 1.4  | 25        |
| 100 | Prognostic impact of chromosomal abnormalities and copy number alterations in adult B-cell precursor acute lymphoblastic leukaemia: a UKALL14 study. Leukemia, 2022, 36, 625-636.                                                               | 7.2  | 25        |
| 101 | Defining low-risk high hyperdiploidy in patients with paediatric acute lymphoblastic leukaemia: a<br>retrospective analysis of data from the UKALL97/99 and UKALL2003 clinical trials. Lancet<br>Haematology,the, 2021, 8, e828-e839.           | 4.6  | 25        |
| 102 | Mouse xenograft modeling of human adult acute lymphoblastic leukemia provides mechanistic<br>insights into adult LIC biology. Blood, 2014, 124, 96-105.                                                                                         | 1.4  | 24        |
| 103 | The 9p21.3 risk of childhood acute lymphoblastic leukaemia is explained by a rare high-impact variant in CDKN2A. Scientific Reports, 2015, 5, 15065.                                                                                            | 3.3  | 24        |
| 104 | MLL translocations with concurrent 3? deletions: Interpretation of FISH results. Genes Chromosomes and Cancer, 2004, 41, 266-271.                                                                                                               | 2.8  | 23        |
| 105 | Long-term follow-up of ETV6–RUNX1 ALL reveals that NCI risk, rather than secondary genetic abnormalities, is the key risk factor. Leukemia, 2013, 27, 2256-2259.                                                                                | 7.2  | 23        |
| 106 | No prognostic effect of additional chromosomal abnormalities in children with acute lymphoblastic<br>leukemia and 11q23 abnormalities. Leukemia, 2005, 19, 557-563.                                                                             | 7.2  | 22        |
| 107 | Abnormalities of the der(12)t(12;21) in ETV6â€RUNX1 acute lymphoblastic leukemia. Genes Chromosomes and Cancer, 2013, 52, 202-213.                                                                                                              | 2.8  | 22        |
| 108 | Cytogenetics and outcome of infants with acute lymphoblastic leukemia and absence of MLL rearrangements. Leukemia, 2014, 28, 428-430.                                                                                                           | 7.2  | 22        |

| #   | Article                                                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Genetic polymorphisms in microsomal epoxide hydrolase  and susceptibility to adult acute myeloid<br>leukaemia  with defined cytogenetic abnormalities. British Journal of Haematology, 2002, 116, 587-594.                                                                                                | 2.5 | 21        |
| 110 | ls trisomy 5 a distinct cytogenetic subgroup in acute lymphoblastic leukemia?. Cancer Genetics and Cytogenetics, 2004, 148, 159-162.                                                                                                                                                                      | 1.0 | 21        |
| 111 | Episomal amplification of NUP214-ABL1 fusion gene in B-cell acute lymphoblastic leukemia. Blood, 2012, 120, 4441-4443.                                                                                                                                                                                    | 1.4 | 21        |
| 112 | Immunophenotype and cytogenetic characteristics in the relationship between birth weight and childhood leukemia. Pediatric Blood and Cancer, 2012, 58, 7-11.                                                                                                                                              | 1.5 | 21        |
| 113 | Association of 17p loss with late-stage or refractory disease in hematologic malignancy. Cancer<br>Genetics and Cytogenetics, 1994, 77, 134-143.                                                                                                                                                          | 1.0 | 18        |
| 114 | ETV6/RUNX1 fusion at diagnosis and relapse: Some prognostic indications. Genes Chromosomes and Cancer, 2005, 43, 54-71.                                                                                                                                                                                   | 2.8 | 17        |
| 115 | Involvement of the MLL gene in T-lineage acute lymphoblastic leukemia. Blood, 2002, 100, 2273-2273.                                                                                                                                                                                                       | 1.4 | 16        |
| 116 | Acute leukemia in children with Down's syndrome: the importance of population based study.<br>Haematologica, 2008, 93, 1262-1263.                                                                                                                                                                         | 3.5 | 16        |
| 117 | Complex hypodiploidy in acute myeloid leukaemia: A United Kingdom Cancer Cytogenetics Group study.<br>Leukemia Research, 1995, 19, 905-913.                                                                                                                                                               | 0.8 | 15        |
| 118 | Dynamic clonal progression in xenografts of acute lymphoblastic leukemia with intrachromosomal amplification of chromosome 21. Haematologica, 2018, 103, 634-644.                                                                                                                                         | 3.5 | 13        |
| 119 | Imatinib Significantly Enhances Long-Term Outcomes In Philadelphia Positive Acute Lymphoblastic<br>Leukaemia; Final Results of the UKALLXII/ECOG2993 Trial. Blood, 2010, 116, 169-169.                                                                                                                    | 1.4 | 13        |
| 120 | Relapse in teenage and young adult patients treated on a paediatric minimal residual disease stratified<br><scp>ALL</scp> treatment protocol is associated with a poor outcome: results from<br><scp>UKALL</scp> 2003. British Journal of Haematology, 2018, 181, 515-522.                                | 2.5 | 12        |
| 121 | Longâ€ŧerm survival after childhood acute lymphoblastic leukaemia: populationâ€based trends in cure<br>and relapse by clinical characteristics. British Journal of Haematology, 2018, 182, 851-858.                                                                                                       | 2.5 | 12        |
| 122 | Single nucleotide polymorphism arrayâ€based signature of low hypodiploidy in acute lymphoblastic<br>leukemia. Genes Chromosomes and Cancer, 2021, 60, 604-615.                                                                                                                                            | 2.8 | 12        |
| 123 | Genetic characterisation of childhood Bâ€otherâ€acute lymphoblastic leukaemia in UK patients by<br>fluorescence <i>inÂsitu</i> hybridisation and Multiplex Ligationâ€dependent Probe Amplification. British<br>Journal of Haematology, 2022, 196, 753-763.                                                | 2.5 | 12        |
| 124 | In-vivo T-cell depleted reduced-intensity conditioned allogeneic haematopoietic stem-cell<br>transplantation for patients with acute lymphoblastic leukaemia in first remission: results from the<br>prospective, single-arm evaluation of the UKALL14 trial. Lancet Haematology,the, 2022, 9, e276-e288. | 4.6 | 12        |
| 125 | Minimal residual disease, long-term outcome, and IKZF1 deletions in children and adolescents with<br>Down syndrome and acute lymphocytic leukaemia: a matched cohort study. Lancet Haematology,the,<br>2021, 8, e700-e710.                                                                                | 4.6 | 10        |
| 126 | Antigen receptor gene rearrangements reflect on the heterogeneity of adult Acute Lymphoblastic<br>Leukaemia (ALL) with implications of cellâ€origin of ALL subgroups – a UKALLXII study. British Journal of<br>Haematology, 2010, 148, 394-401.                                                           | 2.5 | 9         |

| #   | Article                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Distinct patterns of gained chromosomes in high hyperdiploid acute lymphoblastic leukemia with t(1;19)(q23;p13), t(9;22)(q34;q22) or MLL rearrangements. Leukemia, 2013, 27, 974-977.                                                                                   | 7.2 | 9         |
| 128 | Treating childhood acute lymphoblastic leukemia in Malawi. Haematologica, 2013, 98, e1-e3.                                                                                                                                                                              | 3.5 | 9         |
| 129 | Clonal dynamics in pediatric Bâ€cell precursor acute lymphoblastic leukemia with very early relapse.<br>Pediatric Blood and Cancer, 2022, 69, e29361.                                                                                                                   | 1.5 | 9         |
| 130 | DNA-thioguanine concentration and relapse risk in children and young adults with acute lymphoblastic leukemia: an IPD meta-analysis. Leukemia, 2022, 36, 33-41.                                                                                                         | 7.2 | 8         |
| 131 | Acute Lymphoblastic Leukemia in Children with Down Syndrome: A Report From the Ponte Di Legno<br>Study Group,. Blood, 2011, 118, 3579-3579.                                                                                                                             | 1.4 | 8         |
| 132 | Time to Cure for Childhood and Young Adult Acute Lymphoblastic Leukemia Is Independent of Early<br>Risk Factors: Long-Term Follow-Up of the UKALL2003 Trial. Journal of Clinical Oncology, 2022, 40,<br>4228-4239.                                                      | 1.6 | 8         |
| 133 | Concordance of copy number abnormality detection using SNP arrays and Multiplex<br>Ligation-dependent Probe Amplification (MLPA) in acute lymphoblastic leukaemia. Scientific Reports,<br>2020, 10, 45.                                                                 | 3.3 | 7         |
| 134 | <i>IKZF1</i> alterations are not associated with outcome in 498 adults with B-precursor ALL enrolled<br>in the UKALL14 trial. Blood Advances, 2021, 5, 3322-3332.                                                                                                       | 5.2 | 7         |
| 135 | Unravelling the prognostic effect of IKZF1 deletions and IGH@-CRLF2 in adult acute lymphoblastic leukaemia. Pathology, 2013, 45, 609-612.                                                                                                                               | 0.6 | 6         |
| 136 | BTG1 deletions do not predict outcome in Down syndrome acute lymphoblastic leukemia. Leukemia, 2013, 27, 251-252.                                                                                                                                                       | 7.2 | 6         |
| 137 | Outcome of 1,229 Adult Philadelphia Chromosome Negative B Acute Lymphoblastic Leukemia (B-ALL)<br>Patients (pts) From the International UKALLXII/E2993 Trial: No Difference In Results Between B Cell<br>Immunophenotypic Subgroups. Blood, 2010, 116, 524-524.         | 1.4 | 6         |
| 138 | Patients entered into MRC AML trials are biologically representative of the totality of the disease in the UK. International Journal of Laboratory Hematology, 2002, 24, 263-265.                                                                                       | 0.2 | 5         |
| 139 | Does TP53 guard ALL genomes?. Blood, 2014, 124, 160-161.                                                                                                                                                                                                                | 1.4 | 5         |
| 140 | Time for ALL adults to catch up with the children. Blood, 2017, 130, 1781-1783.                                                                                                                                                                                         | 1.4 | 5         |
| 141 | Prognostic impact of the absence of biallelic deletion at the <i>TRG</i> locus for pediatric patients with T-cell acute lymphoblastic leukemia treated on the Medical Research Council UK Acute Lymphoblastic Leukemia 2003 trial. Haematologica, 2018, 103, e288-e292. | 3.5 | 5         |
| 142 | Germline variants in predisposition genes in children with Down syndrome and acute lymphoblastic<br>leukemia. Blood Advances, 2020, 4, 672-675.                                                                                                                         | 5.2 | 5         |
| 143 | Acute lymphoblastic leukemia with aleukemic prodrome: preleukemic dynamics and possible mechanisms of immunosurveillance. Haematologica, 2017, 102, e225-e228.                                                                                                          | 3.5 | 4         |
| 144 | DNA-TG and risk of sinusoidal obstruction syndrome in childhood acute lymphoblastic leukemia.<br>Leukemia, 2022, 36, 555-557.                                                                                                                                           | 7.2 | 4         |

| #   | Article                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Activity and toxicity of intramuscular 1000 <scp>iu</scp> /m <sup>2</sup> polyethylene glycol― <i>E.<br/>coli</i> <scp>Lâ€esparaginase</scp> in the <scp>UKALL</scp> 2003 and <scp>UKALL</scp> 2011 clinical<br>trials. British Journal of Haematology, 2022, , .                 | 2.5 | 3         |
| 146 | Combining Genotype Profiling with MRD for More Accurate Prognostication in Acute Lymphoblastic<br>Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, S63-S65.                                                                                                           | 0.4 | 2         |
| 147 | Prognostic value of Oncogenetic mutations in pediatric T Acute Lymphoblastic Leukemia: a comparison of UKALL2003 and FRALLE2000T protocols. Leukemia, 2021, , .                                                                                                                   | 7.2 | 2         |
| 148 | Cytogenetics and Molecular Genetics. , 2017, , 61-98.                                                                                                                                                                                                                             |     | 2         |
| 149 | The Spectrum and Prognostic Relevance of Additional Abnormalities, Involving 12p and 21q, in<br>Children with ETV6-RUNX1 Positive Acute Lymphoblastic Leukaemia (ALL). Blood, 2008, 112, 430-430.                                                                                 | 1.4 | 2         |
| 150 | Genetic Profiles and Risk Stratification in Adult De Novo Acute Myeloid Leukaemia in Relation to Age,<br>Gender, and Ethnicity: A Study from Malaysia. International Journal of Molecular Sciences, 2022, 23,<br>258.                                                             | 4.1 | 2         |
| 151 | Challenges of starting treatment protocols for acute lymphoblastic leukaemia in a lowâ€income setting<br>— the Blantyre experience. British Journal of Haematology, 2020, 191, e87-e90.                                                                                           | 2.5 | 1         |
| 152 | Probes for hidden hyperdiploidy in acute lymphoblastic leukaemia. Genes Chromosomes and Cancer, 1996, 16, 40-45.                                                                                                                                                                  | 2.8 | 1         |
| 153 | One man's dose, another man's poison. Blood, 2008, 111, 3303-3304.                                                                                                                                                                                                                | 1.4 | 0         |
| 154 | Response: Age- and sex-adjusted incidence rates of adults with acute lymphoblastic leukemia (ALL) in the northern part of England. Blood, 2010, 116, 1012-1012.                                                                                                                   | 1.4 | 0         |
| 155 | Early morphological response is significantly associated with, but does not accurately predict,<br>relapse in teenagers and young adults aged 10–24Âyears with acute lymphoblastic leukaemia (ALL):<br>results fromUKALL2003. British Journal of Haematology, 2019, 184, 663-666. | 2.5 | 0         |