
## Pariya Nazari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/707614/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Rare-earth coordination polymers with multimodal luminescence on the nano-, micro-, and milli-second time scales. IScience, 2021, 24, 102207.                                                                                                                  | 4.1  | 5         |
| 2  | Vacuumâ€Assisted Growth of Lowâ€Bandgap Thin Films<br>(FA <sub>0.8</sub> MA <sub>0.2</sub> Sn <sub>0.5</sub> Pb <sub>0.5</sub> I <sub>3</sub> ) for<br>Allâ€Perovskite Tandem Solar Cells. Advanced Energy Materials, 2020, 10, 1902583.                       | 19.5 | 60        |
| 3  | Lanthanide Sensitizers for Large Anti-Stokes Shift Near-Infrared-to-Visible Triplet–Triplet Annihilation<br>Photon Upconversion. Journal of Physical Chemistry Letters, 2020, 11, 2477-2481.                                                                   | 4.6  | 24        |
| 4  | High-Brightness Perovskite Light-Emitting Diodes Using a Printable Silver Microflake Contact. ACS<br>Applied Materials & Interfaces, 2020, 12, 11428-11437.                                                                                                    | 8.0  | 11        |
| 5  | Efficient Ytterbium Near-Infrared Luminophore Based on a Nondeuterated Ligand. Inorganic Chemistry, 2019, 58, 6959-6965.                                                                                                                                       | 4.0  | 15        |
| 6  | MoS <sub>2</sub> : a two-dimensional hole-transporting material for high-efficiency, low-cost perovskite solar cells. Nanotechnology, 2018, 29, 205201.                                                                                                        | 2.6  | 73        |
| 7  | Novel nanostructured electron transport compact layer for efficient and large-area perovskite solar cells using acidic treatment of titanium layer. Nanotechnology, 2018, 29, 075404.                                                                          | 2.6  | 29        |
| 8  | Long-Term Durability of Bromide-Incorporated Perovskite Solar Cells via a Modified Vapor-Assisted Solution Process. ACS Applied Energy Materials, 2018, 1, 6018-6026.                                                                                          | 5.1  | 17        |
| 9  | Improving the performance of perovskite solar cells using kesterite mesostructure and plasmonic network. Solar Energy, 2018, 169, 498-504.                                                                                                                     | 6.1  | 29        |
| 10 | Facile green deposition of nanostructured porous NiO thin film by spray coating. Materials Letters, 2017, 190, 40-44.                                                                                                                                          | 2.6  | 11        |
| 11 | Physicochemical Interface Engineering of Cul/Cu as Advanced Potential Hole-Transporting<br>Materials/Metal Contact Couples in Hysteresis-Free Ultralow-Cost and Large-Area Perovskite Solar<br>Cells. Journal of Physical Chemistry C, 2017, 121, 21935-21944. | 3.1  | 65        |
| 12 | Band gap engineering of Cu3FexSn(1-x)S4: A potential absorber material for solar energy. Journal of<br>Physics and Chemistry of Solids, 2017, 111, 110-114.                                                                                                    | 4.0  | 14        |
| 13 | Potential continuous removal of toluene by ZnO nanorods grown on permeable alumina tube filters.<br>RSC Advances, 2016, 6, 52360-52371.                                                                                                                        | 3.6  | 7         |