
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7076076/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Colloidal nanoparticles as advanced biological sensors. Science, 2014, 346, 1247390.	6.0	842
2	Multi-Stimuli-Responsive Polymer Particles, Films, and Hydrogels for Drug Delivery. CheM, 2018, 4, 2084-2107.	5.8	245
3	A Microreactor with Thousands of Subcompartments: Enzyme‣oaded Liposomes within Polymer Capsules. Angewandte Chemie - International Edition, 2009, 48, 4359-4362.	7.2	204
4	Progress and Promise of Nitric Oxideâ€Releasing Platforms. Advanced Science, 2018, 5, 1701043.	5.6	194
5	Polymer hydrogel capsules: en route toward synthetic cellular systems. Nanoscale, 2009, 1, 68.	2.8	171
6	Biomimetic Liposome- and Polymersome-Based Multicompartmentalized Assemblies. Langmuir, 2012, 28, 13798-13807.	1.6	160
7	Liposomes and lipid bilayers in biosensors. Advances in Colloid and Interface Science, 2017, 249, 88-99.	7.0	140
8	Engineering Advanced Capsosomes: Maximizing the Number of Subcompartments, Cargo Retention, and Temperature-Triggered Reaction. ACS Nano, 2010, 4, 1351-1361.	7.3	139
9	Metal and Metal Oxide Nanoparticles to Enhance the Performance of Enzyme-Linked Immunosorbent Assay (ELISA). ACS Applied Nano Materials, 2020, 3, 1-21.	2.4	135
10	Magnetic biosensors: Modelling and simulation. Biosensors and Bioelectronics, 2018, 103, 69-86.	5.3	129
11	Capsosomes: Subcompartmentalizing Polyelectrolyte Capsules Using Liposomes. Langmuir, 2009, 25, 6725-6732.	1.6	127
12	Enzyme-responsive polymer hydrogels for therapeutic delivery. Experimental Biology and Medicine, 2016, 241, 972-979.	1.1	125
13	Cholesterol-mediated anchoring of enzyme-loaded liposomes within disulfide-stabilized polymer carrier capsules. Biomaterials, 2009, 30, 5988-5998.	5.7	103
14	Multicompartment Particle Assemblies for Bioinspired Encapsulated Reactions. Journal of Physical Chemistry Letters, 2011, 2, 2639-2649.	2.1	100
15	Peptide-induced super-assembly of biocatalytic metal–organic frameworks for programmed enzyme cascades. Chemical Science, 2019, 10, 7852-7858.	3.7	91
16	Stabilization of Polymerâ€Hydrogel Capsules via Thiol–Disulfide Exchange. Small, 2009, 5, 2601-2610.	5.2	90
17	Therapeutic applications of multifunctional nanozymes. Nanoscale, 2019, 11, 21046-21060.	2.8	89
18	Localized and Controlled Delivery of Nitric Oxide to the Conventional Outflow Pathway via Enzyme Biocatalysis: Toward Therapy for Glaucoma. Advanced Materials, 2017, 29, 1604932.	11.1	85

#	Article	IF	CITATIONS
19	Tuning chromatic response, sensitivity, and specificity of polydiacetylene-based sensors. Polymer Chemistry, 2020, 11, 166-183.	1.9	85
20	Capsosomes with "Freeâ€Floating―Liposomal Subcompartments. Advanced Materials, 2011, 23, 4082-4087.	11.1	84
21	Triggered Cargo Release by Encapsulated Enzymatic Catalysis in Capsosomes. Nano Letters, 2011, 11, 4958-4963.	4.5	82
22	Polydiacetylene-based sensors to detect food spoilage at low temperatures. Journal of Materials Chemistry C, 2019, 7, 1919-1926.	2.7	82
23	Engineering Extracellular Vesicles with the Tools of Enzyme Prodrug Therapy. Advanced Materials, 2018, 30, e1706616.	11.1	77
24	A polydiacetylene-based colorimetric sensor as an active use-by date indicator for milk. Journal of Colloid and Interface Science, 2020, 572, 31-38.	5.0	75
25	Anthocyanin-based sensors derived from food waste as an active use-by date indicator for milk. Food Chemistry, 2020, 326, 127017.	4.2	71
26	Noncovalent Liposome Linkage and Miniaturization of Capsosomes for Drug Delivery. Biomacromolecules, 2010, 11, 3548-3555.	2.6	63
27	Nitric Oxide to Fight Viral Infections. Advanced Science, 2021, 8, 2003895.	5.6	62
28	Naked-Eye Detection of Ethylene Using Thiol-Functionalized Polydiacetylene-Based Flexible Sensors. ACS Sensors, 2020, 5, 1921-1928.	4.0	58
29	Metal-organic frameworks for therapeutic gas delivery. Advanced Drug Delivery Reviews, 2021, 171, 199-214.	6.6	55
30	Nanocellulose for Sensing Applications. Advanced Materials Interfaces, 2019, 6, 1900424.	1.9	54
31	Controlled assembly of peptide-functionalized gold nanoparticles for label-free detection of blood coagulation Factor XIII activity. Chemical Communications, 2014, 50, 5431.	2.2	49
32	Food Sensors: Challenges and Opportunities. Advanced Materials Technologies, 2021, 6, 2001242.	3.0	49
33	Selective etching of injection molded zirconia-toughened alumina: Towards osseointegrated and antibacterial ceramic implants. Acta Biomaterialia, 2016, 46, 308-322.	4.1	35
34	MicroRNA Detection by DNAâ€Mediated Liposome Fusion. ChemBioChem, 2018, 19, 434-438.	1.3	35
35	Enzyme Mimics for the Catalytic Generation of Nitric Oxide from Endogenous Prodrugs. Small, 2020, 16, e1907635.	5.2	34
36	Enzyme Prodrug Therapy Engineered into Electrospun Fibers with Embedded Liposomes for Controlled, Localized Synthesis of Therapeutics. Advanced Healthcare Materials, 2017, 6, 1700385.	3.9	33

#	Article	IF	CITATIONS
37	Gallium Nanodroplets are Anti-Inflammatory without Interfering with Iron Homeostasis. ACS Nano, 2022, 16, 8891-8903.	7.3	33
38	Layer-by-Layer Self-Assembly of Polymer Films and Capsules through Coiled-Coil Peptides. Chemistry of Materials, 2015, 27, 5820-5824.	3.2	32
39	Capsosomes as Long-Term Delivery Vehicles for Protein Therapeutics. Langmuir, 2015, 31, 7776-7781.	1.6	31
40	Tuning crystallization and morphology of zinc oxide with polyvinylpyrrolidone: Formation mechanisms and antimicrobial activity. Journal of Colloid and Interface Science, 2019, 546, 43-52.	5.0	30
41	Enzyme Prodrug Therapy Achieves Site-Specific, Personalized Physiological Responses to the Locally Produced Nitric Oxide. ACS Applied Materials & Interfaces, 2018, 10, 10741-10751.	4.0	29
42	Optically Characterized DNA Multilayered Assemblies and Phenomenological Modeling of Layer-by-Layer Hybridization. Journal of Physical Chemistry C, 2009, 113, 21185-21195.	1.5	28
43	Origin of high piezoelectric activity in perovskite ferroelectric ceramics. Applied Physics Letters, 2014, 104, .	1.5	27
44	Zinc Oxide Particles Catalytically Generate Nitric Oxide from Endogenous and Exogenous Prodrugs. Small, 2020, 16, e1906744.	5.2	27
45	Copper-doped metal–organic frameworks for the controlled generation of nitric oxide from endogenous <i>S</i> -nitrosothiols. Journal of Materials Chemistry B, 2021, 9, 1059-1068.	2.9	27
46	Degradation of liposomal subcompartments in PEGylated capsosomes. Soft Matter, 2011, 7, 9638.	1.2	26
47	Label-Free Detection of Tumor Angiogenesis Biomarker Angiopoietin 2 Using Bloch Surface Waves on One Dimensional Photonic Crystals. Journal of Lightwave Technology, 2015, 33, 3385-3393.	2.7	26
48	Bloch surface wave label-free and fluorescence platform for the detection of VEGF biomarker in biological matrices. Sensors and Actuators B: Chemical, 2018, 255, 2143-2150.	4.0	25
49	Advances in Portable Visual Detection of Pathogenic Bacteria. ACS Applied Bio Materials, 2020, 3, 7291-7305.	2.3	24
50	Rapid Detection of <i>Listeriolysin O</i> Toxin Based on a Nanoscale Liposome–Gold Nanoparticle Platform. ACS Applied Nano Materials, 2020, 3, 7270-7280.	2.4	22
51	Core-satellite gold nanoparticle biosensors for monitoring cobalt ions in biological samples. Sensors and Actuators B: Chemical, 2018, 268, 182-187.	4.0	21
52	Bloch surface wave enhanced biosensor for the direct detection of Angiopoietin-2 tumor biomarker in human plasma. Biomedical Optics Express, 2018, 9, 529.	1.5	19
53	Detection of microRNA biomarkers <i>via</i> inhibition of DNA-mediated liposome fusion. Nanoscale Advances, 2019, 1, 532-536.	2.2	18
54	A Polydiacetyleneâ€Based Colorimetric Sensor as an Active Useâ€By Date for Plantâ€Based Milk Alternatives. Macromolecular Rapid Communications, 2020, 41, 2000172.	2.0	18

#	Article	IF	CITATIONS
55	Nanoassembled Peptide Biosensors for Rapid Detection of Matrilysin Cancer Biomarker. Small, 2020, 16, e1905994.	5.2	18
56	Ceria Nanoparticles as an Unexpected Catalyst to Generate Nitric Oxide from <i>S</i> â€Nitrosoglutathione. Small, 2022, 18, e2105762.	5.2	18
57	Polydiacetylene-Based Sensors To Detect Volatile Organic Compounds. Chemistry of Materials, 2022, 34, 2853-2876.	3.2	18
58	Polydiacetylene-based sensors for food applications. Materials Advances, 2022, 3, 4088-4102.	2.6	18
59	Low-Fouling, Biospecific Films Prepared by the Continuous Assembly of Polymers. Biomacromolecules, 2013, 14, 2477-2483.	2.6	17
60	Synthesis and self-assembly of temperature-responsive copolymers based on N-vinylpyrrolidone and triethylene glycol methacrylate. Polymer Chemistry, 2015, 6, 4116-4122.	1.9	17
61	Polydiacetylene for the Detection of α-Hemolysin in Milk toward the Diagnosis of Bovine Mastitis. ACS Applied Polymer Materials, 2020, 2, 5238-5248.	2.0	16
62	Multicompartmentalized Microreactors Containing Nuclei and Catalase-Loaded Liposomes. Biomacromolecules, 2018, 19, 4379-4385.	2.6	15
63	Digital analysis of polydiacetylene quality tags for contactless monitoring of milk. Analytica Chimica Acta, 2021, 1148, 238190.	2.6	15
64	Fabrication of polydiacetylene particles using a solvent injection method. Materials Advances, 2020, 1, 1745-1752.	2.6	13
65	Sensitivity and Selectivity Analysis of Fluorescent Probes for Hydrogen Sulfide Detection. Chemistry - an Asian Journal, 2022, 17, .	1.7	13
66	Synthetic nanoprobes for biological hydrogen sulfide detection and imaging. View, 2022, 3, .	2.7	12
67	Energy transfer, optical and luminescent properties in Tm3+/Tb3+/Sm3+ tri-doped borate glasses. Journal of Materials Science: Materials in Electronics, 2017, 28, 553-558.	1.1	11
68	Yb3+/Tb3+/Ho3+: phosphate nanophase embedded glass ceramics: enhanced upconversion emission and temperature sensing behavior. Journal of Materials Science: Materials in Electronics, 2019, 30, 778-785.	1.1	10
69	Optical sensors. , 2020, , 23-45.		10
70	Solvent injection for polydiacetylene particle synthesis – Effects of varying solvent, injection rate, monomers and needle size on polydiacetylene properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 619, 126497.	2.3	9
71	Peptideâ€Mediated Liposome Fusion as a Tool for the Detection of Matrix Metalloproteinases. Advanced Biology, 2019, 3, e1800330.	3.0	8
72	Locomotion of Micromotors Due to Liposome Disintegration. Langmuir, 2020, 36, 7056-7065.	1.6	8

#	Article	IF	CITATIONS
73	Synthetic chemical ligands and cognate antibodies for biorthogonal drug targeting and cell engineering. Advanced Drug Delivery Reviews, 2021, 170, 281-293.	6.6	8
74	Microstructures and Microwave Dielectric Properties of Low-Temperature Fired Ca0.8Sr0.2TiO3-Li0.5Sm0.5TiO3 Ceramics with Bi2O3-2B2O3 Addition. Journal of Electronic Materials, 2015, 44, 263-270.	1.0	7
75	Biosensing platform combining label-free and labelled analysis using Bloch surface waves. , 2015, , .		6
76	Electrical Properties of Sr _{1–} <scp>_{<i>x</i>}B</scp> i _{<i>x</i>} Fe _{0.6} Sn _{0.4Thermistor Ceramics. International Journal of Applied Ceramic Technology, 2015, 12, E235.}	sub> D k sut	o>3 5 /sub>
77	Layer-by-Layer Engineered Polymer Capsules for Therapeutic Delivery. Methods in Molecular Biology, 2018, 1758, 73-84.	0.4	5
78	Membrane Fusion Models for Bioapplications. ChemNanoMat, 2021, 7, 223-237.	1.5	5
79	Nanoparticle-based colorimetric sensors to detect neurodegenerative disease biomarkers. Biomaterials Science, 2021, 9, 6983-7007.	2.6	5
80	Modulating nitric oxide-generating activity of zinc oxide by morphology control and surface modification. Materials Science and Engineering C, 2021, 130, 112428.	3.8	4
81	Luminescent characteristics of Tm3+/Tb3+/Eu3+ tri-doped borophosphate glasses for LED applications. Journal of Materials Science: Materials in Electronics, 2017, 28, 5592-5596.	1.1	3
82	Self-Assembly and Bioconjugation in Drug Delivery. Advanced Drug Delivery Reviews, 2021, 174, 628-629.	6.6	3
83	Artificial Antigen Presenting Cells for Detection and Desensitization of Autoreactive T cells Associated with Type 1 Diabetes. Nano Letters, 2022, 22, 4376-4382.	4.5	3
84	Polymeric Amines Induce Nitric Oxide Release from <i>S</i> â€Nitrosothiols. Small, 0, , 2200502.	5.2	3
85	Low-Temperature Sintering and Microwave Dielectric Properties of Bi0.9Ln0.05Li0.05V0.9Mo0.1O4 (LnÂ=ÂSm, Nd and La) Ceramics. Journal of Electronic Materials, 2016, 45, 4302-4308.	1.0	2
86	Microstructures and electrical properties of Sr0.6Bi0.4Fe0.6Sn0.4O3–BaColl 0.02Colll 0.04Bi0.94O3 thick-film thermistors with low room-temperature resistivity. Journal of Materials Science: Materials in Electronics, 2014, 25, 3967-3976.	1.1	1
87	Bionanotechnology: Peptideâ€Mediated Liposome Fusion as a Tool for the Detection of Matrix Metalloproteinases (Adv. Biosys. 5/2019). Advanced Biology, 2019, 3, 1970053.	3.0	1
88	Label-free and fluorescence biosensing platform using one dimensional photonic crystal chips. Proceedings of SPIE, 2016, , .	0.8	0
89	Drug Delivery: Engineering Extracellular Vesicles with the Tools of Enzyme Prodrug Therapy (Adv.) Tj ETQq1 1 0	.784314 rg	gBT /Overlock