Xinglong Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/707579/publications.pdf

Version: 2024-02-01

100

all docs

97 5,609 35
papers citations h-index

100

docs citations

100 5800 times ranked citing authors

73

g-index

#	Article	IF	CITATIONS
1	Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science, 2016, 353, 141-144.	12.6	1,088
2	UTSA-74: A MOF-74 Isomer with Two Accessible Binding Sites per Metal Center for Highly Selective Gas Separation. Journal of the American Chemical Society, 2016, 138, 5678-5684.	13.7	489
3	Catalytically active single-atom niobium in graphitic layers. Nature Communications, 2013, 4, 1924.	12.8	261
4	Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers. Nature Communications, 2018, 9, 1745.	12.8	251
5	Tailorâ€Made Microporous Metal–Organic Frameworks for the Full Separation of Propane from Propylene Through Selective Size Exclusion. Advanced Materials, 2018, 30, e1805088.	21.0	241
6	Investigating the Origin of Enhanced C ₂₊ Selectivity in Oxide-/Hydroxide-Derived Copper Electrodes during CO ₂ Electroreduction. Journal of the American Chemical Society, 2020, 142, 4213-4222.	13.7	236
7	A nitrogen-rich covalent organic framework for simultaneous dynamic capture of iodine and methyl iodide. CheM, 2021, 7, 699-714.	11.7	197
8	Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps. Nature Communications, 2017, 8, 485.	12.8	171
9	Ionic Functionalization of Multivariate Covalent Organic Frameworks to Achieve an Exceptionally High Iodine apture Capacity. Angewandte Chemie - International Edition, 2021, 60, 22432-22440.	13.8	148
10	Enhanced microwave absorption by arrayed carbon fibers and gradient dispersion of Fe nanoparticles in epoxy resin composites. Carbon, 2016, 96, 987-997.	10.3	143
11	Direct Imaging of Atomically Dispersed Molybdenum that Enables Location of Aluminum in the Framework of Zeolite ZSMâ€5. Angewandte Chemie - International Edition, 2020, 59, 819-825.	13.8	125
12	Graphene nanoflakes with optimized nitrogen doping fabricated by arc discharge as highly efficient absorbers toward microwave absorption. Carbon, 2019, 148, 204-213.	10.3	117
13	One-of-a-kind: a microporous metal–organic framework capable of adsorptive separation of linear, mono- and di-branched alkane isomers <i>via</i> temperature- and adsorbate-dependent molecular sieving. Energy and Environmental Science, 2018, 11, 1226-1231.	30.8	103
14	Efficient and simultaneous capture of iodine and methyl iodide achieved by a covalent organic framework. Nature Communications, 2022, 13, .	12.8	101
15	Chemically Stable Guanidinium Covalent Organic Framework for the Efficient Capture of Low-Concentration Iodine at High Temperatures. Journal of the American Chemical Society, 2022, 144, 6821-6829.	13.7	89
16	Light Hydrocarbon Adsorption Mechanisms in Two Calcium-Based Microporous Metal Organic Frameworks. Chemistry of Materials, 2016, 28, 1636-1646.	6.7	87
17	A Roadmap to Sorption-Based Atmospheric Water Harvesting: From Molecular Sorption Mechanism to Sorbent Design and System Optimization. Environmental Science & Environmental Science & 2021, 55, 6542-6560.	10.0	86
18	Investigating the Influence of Mesoporosity in Zeolite Beta on Its Catalytic Performance for the Conversion of Methanol to Hydrocarbons. ACS Catalysis, 2015, 5, 5837-5845.	11.2	84

#	Article	IF	CITATIONS
19	[Cu ₈₁ (PhS) ₄₆ (^{<i>t</i>} BuNH ₂) ₁₀ (H) ₃₂ Reveals the Coexistence of Large Planar Cores and Hemispherical Shells in High-Nuclearity Copper Nanoclusters. Journal of the American Chemical Society, 2020, 142, 8696-8705.	/sub>] <su 13.7</su 	ip>3+
20	Beyond Creation of Mesoporosity: The Advantages of Polymerâ€Based Dualâ€Function Templates for Fabricating Hierarchical Zeolites. Advanced Functional Materials, 2016, 26, 1881-1891.	14.9	66
21	Engineering effective structural defects of metal–organic frameworks to enhance their catalytic performances. Journal of Materials Chemistry A, 2020, 8, 4464-4472.	10.3	66
22	Splitting Mono- and Dibranched Alkane Isomers by a Robust Aluminum-Based Metal–Organic Framework Material with Optimal Pore Dimensions. Journal of the American Chemical Society, 2020, 142, 6925-6929.	13.7	60
23	Microporous cokes formed in zeolite catalysts enable efficient solar evaporation. Journal of Materials Chemistry A, 2017, 5, 6860-6865.	10.3	55
24	Nitrogen-doped graphene layer-encapsulated NiFe bimetallic nanoparticles synthesized by an arc discharge method for a highly efficient microwave absorber. Inorganic Chemistry Frontiers, 2020, 7, 1148-1160.	6.0	48
25	Carbon nanotube supported oriented metal organic framework membrane for effective ethylene/ethane separation. Science Advances, 2022, 8, eabm6741.	10.3	46
26	Recent progress in the direct synthesis of hierarchical zeolites: synthetic strategies and characterization methods. Materials Chemistry Frontiers, 2017, 1, 2195-2212.	5.9	45
27	Arc-discharge synthesis of nitrogen-doped C embedded TiCN nanocubes with tunable dielectric/magnetic properties for electromagnetic absorbing applications. Nanoscale, 2019, 11, 19994-20005.	5.6	42
28	Highâ€Efficiency Separation of <i>n < /i> â€Hexane by a Dynamic Metalâ€Organic Framework with Reduced Energy Consumption. Angewandte Chemie - International Edition, 2021, 60, 10593-10597.</i>	13.8	42
29	Highly Active Heterogeneous Catalyst for Ethylene Dimerization Prepared by Selectively Doping Ni on the Surface of a Zeolitic Imidazolate Framework. Journal of the American Chemical Society, 2021, 143, 7144-7153.	13.7	42
30	Dominant pseudocapacitive lithium storage in the carbon-coated ferric oxide nanoparticles (Fe2O3@C) towards anode materials for lithium-ion batteries. International Journal of Hydrogen Energy, 2020, 45, 8186-8197.	7.1	41
31	Soluble Polymers with Intrinsic Porosity for Flue Gas Purification and Natural Gas Upgrading. Advanced Materials, 2017, 29, 1605826.	21.0	40
32	Magnetic Behavior, Electromagnetic Multiresonances, and Microwave Absorption of the Interfacial Engineered Fe@FeSi/SiO ₂ Nanocomposite. ACS Applied Nano Materials, 2018, 1, 1309-1320.	5.0	40
33	Fine Tuning the Diffusion Length in Hierarchical ZSM-5 To Maximize the Yield of Propylene in Catalytic Cracking of Hydrocarbons. ACS Sustainable Chemistry and Engineering, 2018, 6, 15832-15840.	6.7	39
34	Efficient electrochemical transformation of CO ₂ to C ₂ /C ₃ chemicals on benzimidazole-functionalized copper surfaces. Chemical Communications, 2018, 54, 11324-11327.	4.1	39
35	Functionalized metal organic frameworks for effective capture of radioactive organic iodides. Faraday Discussions, 2017, 201, 47-61.	3.2	38
36	Converting Hierarchical to Bulk Structure: A Strategy for Encapsulating Metal Oxides and Noble Metals in Zeolites. Chemistry of Materials, 2018, 30, 6361-6369.	6.7	38

#	Article	IF	CITATIONS
37	FeCoNiSi Al0.4 high entropy alloy powders with dual-phase microstructure: Improving microwave absorbing properties via controlling phase transition. Journal of Alloys and Compounds, 2019, 790, 179-188.	5.5	36
38	Catalytic pyrolysis of microalga Chlorella pyrenoidosa for production of ethylene, propylene and butene. RSC Advances, 2013, 3, 25780.	3.6	34
39	A new mechanism for improving electromagnetic properties based on tunable crystallographic structures of FeCoNiSi _x Al _{0.4} high entropy alloy powders. RSC Advances, 2018, 8, 14936-14946.	3.6	33
40	Direct Imaging of Atomically Dispersed Molybdenum that Enables Location of Aluminum in the Framework of Zeolite ZSMâ€5. Angewandte Chemie, 2020, 132, 829-835.	2.0	33
41	Selective Acetylene Adsorption within an Imino-Functionalized Nanocage-Based Metal–Organic Framework. ACS Applied Materials & Samp; Interfaces, 2020, 12, 5999-6006.	8.0	33
42	Controlling the phenolic resin-based amorphous carbon content for enhancing cycling stability of Si nanosheets@C anodes for lithium-ion batteries. Applied Surface Science, 2019, 476, 1000-1007.	6.1	30
43	Formation mechanism and optical characterization of polymorphic silicon nanostructures by DC arc-discharge. RSC Advances, 2015, 5, 68714-68721.	3.6	28
44	Interface evolution in the platelet-like SiC@C and SiC@SiO2 monocrystal nanocapsules. Nano Research, 2017, 10, 2644-2656.	10.4	27
45	Integration of Open Metal Sites and Lewis Basic Sites for Construction of a Cu MOF with a Rare Chiral <i>O</i> _h â€type cage for high performance in methane purification. Chemistry - A European Journal, 2018, 24, 13181-13187.	3.3	26
46	Optical emission spectroscopy diagnosis of energetic Ar ions in synthesis of SiC polytypes by DC arc discharge plasma. Nano Research, 2018, 11, 1470-1481.	10.4	26
47	Synthesis and electrochemical activities of TiC/C core-shell nanocrystals. Journal of Alloys and Compounds, 2017, 693, 500-509.	5.5	25
48	Incorporation of magnetic component to construct (TiC/Ni)@C ternary composite with heterogeneous interface for enhanced microwave absorption. Journal of Alloys and Compounds, 2019, 778, 779-786.	5.5	25
49	Oxygen-containing coke species in zeolite-catalyzed conversion of methanol to hydrocarbons. Catalysis Science and Technology, 2016, 6, 8157-8165.	4.1	24
50	Upgrading Octane Number of Naphtha by a Robust and Easily Attainable Metalâ€Organic Framework through Selective Molecular Sieving of Alkane Isomers. Chemistry - A European Journal, 2021, 27, 11795-11798.	3.3	20
51	Strong microwave absorption of Fe@SiO2 nanocapsules fabricated by one-step high energy plasma. Journal of Physics and Chemistry of Solids, 2019, 129, 242-251.	4.0	19
52	Regulation of dielectric loss by different exposed crystal facets in graphite-coated titanium carbide nanocomposites. Ceramics International, 2020, 46, 18339-18346.	4.8	19
53	Probing the Catalytic Active Sites of Mo/HZSM-5 and Their Deactivation during Methane Dehydroaromatization. Cell Reports Physical Science, 2021, 2, 100309.	5. 6	17
54	The production of light olefins by catalytic cracking of the microalga Isochrysis zhanjiangensis over a modified ZSM-5 catalyst. Chinese Journal of Catalysis, 2014, 35, 684-691.	14.0	16

#	Article	IF	Citations
55	Separation of hexane isomers by introducing "triangular-like and quadrilateral-like channels―in a bcu-type metal-organic framework. Nano Research, 2021, 14, 526-531.	10.4	14
56	Enhanced dielectric and conductivity properties of carbon-coated SiC nanocomposites in the terahertz frequency range. Nanotechnology, 2021, 32, 265705.	2.6	13
57	Revisiting Al-Ni-Zr bulk metallic glasses using the â€~cluster-resonance' model. Science Bulletin, 2011, 56, 3902-3907.	1.7	12
58	Fabrication of nanostructured V ₂ O ₅ via urea combustion for high-performance Li-ion battery cathode. RSC Advances, 2015, 5, 4256-4260.	3.6	12
59	<i>In situ</i> synthesis and electronic transport of the carbon-coated Ag@C/MWCNT nanocomposite. RSC Advances, 2018, 8, 7450-7456.	3.6	12
60	Methanol-to-Olefin Conversion over Small-Pore DDR Zeolites: Tuning the Propylene Selectivity via the Olefin-Based Catalytic Cycle. ACS Catalysis, 2020, 10, 3009-3017.	11.2	12
61	Preparation of a microalgal photoanode for hydrogen production by photo-bioelectrochemical water-splitting. International Journal of Hydrogen Energy, 2013, 38, 13045-13049.	7.1	10
62	Highâ€Efficiency Separation of <i>n</i> à€Hexane by a Dynamic Metalâ€Organic Framework with Reduced Energy Consumption. Angewandte Chemie, 2021, 133, 10687-10691.	2.0	10
63	Highly selective synthesis of para-cresol by conversion of anisole on ZSM-5 zeolites. Microporous and Mesoporous Materials, 2014, 185, 61-65.	4.4	9
64	Morphological and structural evolution of Si-Cu nanocomposites by an instantaneous vapor-liquid-solid growth and the electrochemical lithiation/delithiation performances. Journal of Solid State Electrochemistry, 2019, 23, 735-748.	2.5	9
65	The Complex Crystal Structure and Abundant Local Defects of Zeolite EMMâ€17 Unraveled by Combined Electron Crystallography and Microscopy. Angewandte Chemie - International Edition, 2021, 60, 24227-24233.	13.8	9
66	lonic Functionalization of Multivariate Covalent Organic Frameworks to Achieve an Exceptionally High Iodine apture Capacity. Angewandte Chemie, 2021, 133, 22606-22614.	2.0	9
67	Highly dispersed Pd nanoparticles confined in ZSM-5 zeolite crystals for selective hydrogenation of cinnamaldehyde. Microporous and Mesoporous Materials, 2022, 330, 111566.	4.4	9
68	Balancing uptake and selectivity in a copper-based metal–organic framework for xenon and krypton separation. Separation and Purification Technology, 2022, 291, 120932.	7.9	9
69	Novel <i>iin situ</i> Synthesized Fe@C Magnetic Nanocapsules Used as Adsorbent for Removal of Organic Dyes and its Recycling. Nano, 2016, 11, 1650013.	1.0	7
70	Three-dimensional porous carbon skeleton supporting Si nanosheets as anode for high-performance lithium ion batteries. Ionics, 2020, 26, 2233-2245.	2.4	7
71	Facile synthesis of ceramic SiC-based nanocomposites and the superior electrochemical lithiation/delithiation performances. Materials Chemistry and Physics, 2020, 243, 122618.	4.0	7
72	Laser ablation of pristine Fe foil for constructing a layer-by-layer SiO ₂ /Fe ₂ O ₃ /Fe integrated anode for high cycling-stability lithium-ion batteries. Physical Chemistry Chemical Physics, 2021, 23, 10365-10376.	2.8	7

#	Article	IF	CITATIONS
73	Optimized microwave absorption properties by tailoring the morphology of carbon coated TiC nanoparticles by N2 pressure. Ceramics International, 2021, 47, 23950-23957.	4.8	7
74	Efficient separation of xylene isomers by using a robust calcium-based metal–organic framework through a synergetic thermodynamically and kinetically controlled mechanism. Journal of Materials Chemistry A, 2021, 9, 26202-26207.	10.3	7
75	Buildup of Sn@CNT nanorods by in-situ thermal plasma and the electronic transport behaviors. Science China Materials, 2018, 61, 1605-1613.	6.3	6
76	In Situ Synthesis of CNTs/Cu Nanocomposites and the Electronic Transport Properties. Physica Status Solidi (B): Basic Research, 2019, 256, 1800557.	1.5	6
77	Thermally stable carbon-coated SiC/polydimethylsiloxane nanocomposites for EMI shielding in the terahertz range. Materials Research Bulletin, 2022, 153, 111900.	5.2	6
78	Regulation of structural and terahertz properties of TiC nanoparticles by carbon-coating and nitrogen-doping. Journal of Physics and Chemistry of Solids, 2022, 169, 110825.	4.0	6
79	Fe2O3-encapsulated SiC nanowires with superior electrochemical properties as anode materials for the lithium-ion batteries. Ionics, 2021, 27, 2431-2444.	2.4	5
80	Facile synthesis of TiO2/WO3 nanocomposites and the electrochemical lithiation/delithiation activity. Journal of Materials Science, 2021, 56, 14505-14517.	3.7	5
81	Formation of Sn filled CNTs nanocomposite: Study of their magnetic, dielectric properties and enhanced microwave absorption performance at gigahertz frequencies. Ceramics International, 2022, 48, 21961-21971.	4.8	5
82	Synthesis of ZSM-2 nanocrystals at ambient temperature. Microporous and Mesoporous Materials, 2014, 185, 149-156.	4.4	4
83	Electrical/thermal behaviors of bimetallic (Ag–Cu, Ag–Sn) nanoparticles for printed electronics. Nanotechnology, 2020, 31, 135603.	2.6	4
84	Influence of N-doping on dielectric properties of carbon-coated copper nanocomposites in the microwave and terahertz ranges. Journal of Materiomics, 2022, 8, 1131-1140.	5.7	4
85	Synthesis of hexagonal-shaped Cr3C2@C nanoplatelets and role of their intrinsic properties towards microwave absorption. Materials Letters, 2021, 288, 129329.	2.6	3
86	Characterization and Formation Mechanism of the Nanodiamond Synthesized by A High Energy Arcâ€Plasma. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800704.	1.8	2
87	Synthesis of functional ceramic nanocrystals (SiC, TiC, TiN) by arc-discharge plasma process., 2017, , .		1
88	Effect of Co-alloying Ti and V on microstructure, mechanical and tribological properties of (Wx,Tiy,V1-x-y)Câ€"Co alloys: A combined theoretical and experimental study. Journal of Alloys and Compounds, 2019, 803, 379-393.	5 . 5	1
89	Effects of Outer Shell Layer on the Electronic Transport Behaviors of Sn@SnO x Nanoparticles. Physica Status Solidi (B): Basic Research, 2021, 258, 2000430.	1.5	1
90	In situ Generation of Molybdenum Carbide in Zeolite for Methane Dehydroaromatization. Kinetics and Catalysis, 2021, 62, S48-S59.	1.0	1

#	Article	IF	CITATIONS
91	Laser-sintering fabrication of integrated Al/Ni anodes for lithium-ion batteries. RSC Advances, 2022, 12, 13168-13179.	3.6	1
92	Structural regulation of carbon-coated Cu nanocapsules as thermally stable microwave absorbers. Journal of Materials Science, 2022, 57, 11735-11747.	3.7	1
93	Hierarchial Zeolites: Beyond Creation of Mesoporosity: The Advantages of Polymerâ€Based Dualâ€Function Templates for Fabricating Hierarchical Zeolites (Adv. Funct. Mater. 12/2016). Advanced Functional Materials, 2016, 26, 1854-1854.	14.9	0
94	Multicolor photoluminescence in ITQ-16 zeolite film. Chemical Research in Chinese Universities, 2016, 32, 713-718.	2.6	0
95	The Complex Crystal Structure and Abundant Local Defects of Zeolite EMM†7 Unraveled by Combined Electron Crystallography and Microscopy. Angewandte Chemie, 2021, 133, 24429.	2.0	0
96	Investigating the Catalytic Active Sites of Mo/HZSM-5 and Their Deactivation During Methane Dehydroaromatization. SSRN Electronic Journal, $0, , .$	0.4	0
97	Arc discharge process for in-situ growth of thermally stable single-phase Cr3C2@C NCs for photocatalytic applications. Journal of Materials Research, 2022, 37, 909.	2.6	0