Anna Heintz-Buschart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7075749/publications.pdf

Version: 2024-02-01

66 papers

4,431 citations

201385 27 h-index 60 g-index

79 all docs

79 docs citations

79 times ranked

7014 citing authors

#	Article	IF	Citations
1	Transcriptome sequencing analysis of maize roots reveals the effects of substrate and root hair formation in a spatial context. Plant and Soil, 2022, 478, 211-228.	1.8	9
2	A beginner's guide to integrating multi-omics data from microbial communities. Biochemist, 2022, 44, 23-29.	0.2	5
3	Fungal guilds and soil functionality respond to tree community traits rather than to tree diversity in European forests. Molecular Ecology, 2021, 30, 572-591.	2.0	31
4	The multidimensionality of soil macroecology. Global Ecology and Biogeography, 2021, 30, 4-10.	2.7	16
5	Soil Texture, Sampling Depth and Root Hairs Shape the Structure of ACC Deaminase Bacterial Community Composition in Maize Rhizosphere. Frontiers in Microbiology, 2021, 12, 616828.	1.5	23
6	Targeting the Active Rhizosphere Microbiome of Trifolium pratense in Grassland Evidences a Stronger-Than-Expected Belowground Biodiversity-Ecosystem Functioning Link. Frontiers in Microbiology, 2021, 12, 629169.	1.5	18
7	PathoFact: a pipeline for the prediction of virulence factors and antimicrobial resistance genes in metagenomic data. Microbiome, 2021, 9, 49.	4.9	81
8	Amplicon Sequencing-Based Bipartite Network Analysis Confirms a High Degree of Specialization and Modularity for Fungi and Prokaryotes in Deadwood. MSphere, 2021, 6, .	1.3	10
9	Persistence of birth mode-dependent effects on gut microbiome composition, immune system stimulation and antimicrobial resistance during the first year of life. ISME Communications, 2021, 1, .	1.7	25
10	Organic agricultural practice enhances arbuscular mycorrhizal symbiosis in correspondence to soil warming and altered precipitation patterns. Environmental Microbiology, 2021, 23, 6163-6176.	1.8	24
11	Pathways linking biodiversity to human health: A conceptual framework. Environment International, 2021, 150, 106420.	4.8	210
12	Circulating bacterial signature is linked to metabolic disease and shifts with metabolic alleviation after bariatric surgery. Genome Medicine, 2021, 13, 105.	3.6	14
13	Structure of Chimpanzee Gut Microbiomes across Tropical Africa. MSystems, 2021, 6, e0126920.	1.7	8
14	Distinct effects of host and neighbour tree identity on arbuscular and ectomycorrhizal fungi along a tree diversity gradient. ISME Communications, $2021, 1, \ldots$	1.7	19
15	Largeâ€scale drivers of relationships between soil microbial properties and organic carbon across Europe. Global Ecology and Biogeography, 2021, 30, 2070-2083.	2.7	32
16	Stool microRNA profiling— dumpster diving for a master marker?. Gut, 2021, , gutjnl-2021-325663.	6.1	0
17	Can We Estimate Functionality of Soil Microbial Communities from Structure-Derived Predictions? A Reality Test in Agricultural Soils. Microbiology Spectrum, 2021, 9, e0027821.	1.2	11
18	Back to the Future: Decomposability of a Biobased and Biodegradable Plastic in Field Soil Environments and Its Microbiome under Ambient and Future Climates. Environmental Science & Emp; Technology, 2021, 55, 12337-12351.	4.6	32

#	Article	IF	CITATIONS
19	Unraveling spatiotemporal variability of arbuscular mycorrhizal fungi in a temperate grassland plot. Environmental Microbiology, 2020, 22, 873-888.	1.8	27
20	Integration of time-series meta-omics data reveals how microbial ecosystems respond to disturbance. Nature Communications, 2020, 11, 5281.	5.8	57
21	Dietary cellulose induces anti-inflammatory immunity and transcriptional programs via maturation of the intestinal microbiota. Gut Microbes, 2020, 12, 1829962.	4.3	35
22	Effects of nitrogen and phosphorus addition on microbial community composition and element cycling in a grassland soil. Soil Biology and Biochemistry, 2020, 151, 108041.	4.2	103
23	Blind spots in global soil biodiversity and ecosystem function research. Nature Communications, 2020, 11, 3870.	5.8	192
24	The archives are half-empty: an assessment of the availability of microbial community sequencing data. Communications Biology, 2020, 3, 474.	2.0	22
25	Inhibition of Respiration of Candida albicans by Small Molecules Increases Phagocytosis Efficacy by Macrophages. MSphere, 2020, 5, .	1.3	6
26	Compatibility of X-ray computed tomography with plant gene expression, rhizosphere bacterial communities and enzyme activities. Journal of Experimental Botany, 2020, 71, 5603-5614.	2.4	17
27	Interactions of nitrogen and phosphorus cycling promote P acquisition and explain synergistic plantâ€growth responses. Ecology, 2020, 101, e03003.	1.5	58
28	Putting soil invertebrate diversity on the map. Molecular Ecology, 2020, 29, 655-657.	2.0	5
29	Dadasnake, a Snakemake implementation of DADA2 to process amplicon sequencing data for microbial ecology. GigaScience, 2020, 9, .	3.3	39
30	Sample Preservation and Storage Significantly Impact Taxonomic and Functional Profiles in Metaproteomics Studies of the Human Gut Microbiome. Microorganisms, 2019, 7, 367.	1.6	32
31	Metabolites of lactic acid bacteria present in fermented foods are highly potent agonists of human hydroxycarboxylic acid receptor 3. PLoS Genetics, 2019, 15, e1008145.	1.5	85
32	Stoichiometric controls of soil carbon and nitrogen cycling after long-term nitrogen and phosphorus addition in a mesic grassland in South Africa. Soil Biology and Biochemistry, 2019, 135, 294-303.	4.2	77
33	Linking Soil Fungal Generality to Tree Richness in Young Subtropical Chinese Forests. Microorganisms, 2019, 7, 547.	1.6	10
34	Extensive transmission of microbes along the gastrointestinal tract. ELife, 2019, 8, .	2.8	313
35	257-LB: Long-Term Effects of Birth Mode on Gut Microbiome Colonization. Diabetes, 2019, 68, .	0.3	0
36	Extraction and Analysis of RNA Isolated from Pure Bacteria-Derived Outer Membrane Vesicles. Methods in Molecular Biology, 2018, 1737, 213-230.	0.4	22

3

#	Article	IF	Citations
37	Mechanisms of Persistence of the Ammonia-Oxidizing Bacteria <i>Nitrosomonas</i> to the Biocide Free Nitrous Acid. Environmental Science & Environmenta	4.6	52
38	The nasal and gut microbiome in Parkinson's disease and idiopathic rapid eye movement sleep behavior disorder. Movement Disorders, 2018, 33, 88-98.	2.2	428
39	Human Gut Microbiome: Function Matters. Trends in Microbiology, 2018, 26, 563-574.	3.5	458
40	Birth mode is associated with earliest strain-conferred gut microbiome functions and immunostimulatory potential. Nature Communications, 2018, 9, 5091.	5.8	190
41	Small RNA profiling of low biomass samples: identification and removal of contaminants. BMC Biology, 2018, 16, 52.	1.7	46
42	The RNA Complement of Outer Membrane Vesicles From Salmonella enterica Serovar Typhimurium Under Distinct Culture Conditions. Frontiers in Microbiology, 2018, 9, 2015.	1.5	62
43	Integrated meta-omic analyses of the gastrointestinal tract microbiome in patients undergoing allogeneic hematopoietic stem cell transplantation. Translational Research, 2017, 186, 79-94.e1.	2.2	27
44	Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes. Nature Microbiology, 2017, 2, 16180.	5.9	233
45	Colonization and Succession within the Human Gut Microbiome by Archaea, Bacteria, and Microeukaryotes during the First Year of Life. Frontiers in Microbiology, 2017, 8, 738.	1.5	207
46	Identification, Recovery, and Refinement of Hitherto Undescribed Population-Level Genomes from the Human Gastrointestinal Tract. Frontiers in Microbiology, 2016, 7, 884.	1.5	8
47	Regulation of Candida albicans Interaction with Macrophages through the Activation of HOG Pathway by Genistein. Molecules, 2016, 21, 162.	1.7	9
48	IMP: a pipeline forÂreproducible reference-independent integrated metagenomic and metatranscriptomic analyses. Genome Biology, 2016, 17, 260.	3.8	141
49	Sources and Functions of Extracellular Small RNAs in Human Circulation. Annual Review of Nutrition, 2016, 36, 301-336.	4.3	110
50	A decade of metaproteomics: Where we stand and what the future holds. Proteomics, 2015, 15, 3409-3417.	1.3	161
51	The extracellular RNA complement of <i>Escherichia coli</i> . MicrobiologyOpen, 2015, 4, 252-266.	1.2	162
52	Comparative integrated omics: identification of key functionalities in microbial community-wide metabolic networks. Npj Biofilms and Microbiomes, 2015, 1, 15007.	2.9	82
53	Method Optimization for Fecal Sample Collection and Fecal DNA Extraction. Biopreservation and Biobanking, 2015, 13, 79-93.	0.5	48
54	Rice responds to endophytic colonization which is independent of the common symbiotic signaling pathway. New Phytologist, 2015, 208, 531-543.	3.5	26

#	Article	IF	CITATIONS
55	Community-integrated omics links dominance of a microbial generalist to fine-tuned resource usage. Nature Communications, 2014, 5, 5603.	5.8	75
56	Sequential Isolation of Metabolites, RNA, DNA, and Proteins from the Same Unique Sample. Methods in Enzymology, 2013, 531, 219-236.	0.4	54
57	Identification of inhibitors of yeast-to-hyphae transition in Candida albicans by a reporter screening assay. Journal of Biotechnology, 2013, 164, 137-142.	1.9	17
58	Flagella Mediate Endophytic Competence Rather Than Act as MAMPS in Rice– <i>Azoarcus</i> sp. Strain BH72 Interactions. Molecular Plant-Microbe Interactions, 2012, 25, 191-199.	1.4	42
59	A novel functional assay for fungal histidine kinases group III reveals the role of HAMP domains for fungicide sensitivity. Journal of Biotechnology, 2012, 157, 268-277.	1.9	23
60	The fungicide fludioxonil antagonizes fluconazole activity in the human fungal pathogen Candida albicans. Journal of Medical Microbiology, 2012, 61, 1696-1703.	0.7	6
61	Biotic interactions, community assembly, and eco-evolutionary dynamics as drivers of long-term biodiversity–ecosystem functioning relationships. Research Ideas and Outcomes, 0, 5, .	1.0	23
62	Microbial diversity-ecosystem function relationships across environmental gradients. Research Ideas and Outcomes, 0, 6, .	1.0	8
63	The sequential isolation of metabolites, RNA, DNA, and proteins from a single, undivided mixed microbial community sample. Protocol Exchange, 0, , .	0.3	0
64	Biotic Interactions as Mediators of Context-Dependent Biodiversity-Ecosystem Functioning Relationships. Research Ideas and Outcomes, 0, 8, .	1.0	10
65	Water Deficit History Selects Plant Beneficial Soil Bacteria Differently Under Conventional and Organic Farming. Frontiers in Microbiology, 0, 13 , .	1.5	6
66	Effects of Tree Composition and Soil Depth on Structure and Functionality of Belowground Microbial Communities in Temperate European Forests. Frontiers in Microbiology, 0, 13, .	1.5	11