Jeremy Sakstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7075699/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Axion instability supernovae. Physical Review D, 2022, 105, .	4.7	8
2	Five percent measurement of the gravitational constant in the Large Magellanic Cloud. Physical Review D, 2021, 103, .	4.7	3
3	Novel Probes Project: Tests of gravity on astrophysical scales. Reviews of Modern Physics, 2021, 93, .	45.6	47
4	Neutrino-assisted early dark energy: theory and cosmology. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 063.	5.4	27
5	Missing in axion: Where are XENON1T's big black holes?. Physics of the Dark Universe, 2021, 32, 100801.	4.9	13
6	Find the Gap: Black Hole Population Analysis with an Astrophysically Motivated Mass Function. Astrophysical Journal Letters, 2021, 916, L16.	8.3	23
7	Direct detection of dark energy: The XENON1T excess and future prospects. Physical Review D, 2021, 104,	4.7	34
8	Early Dark Energy from Massive Neutrinos as a Natural Resolution of the Hubble Tension. Physical Review Letters, 2020, 124, 161301.	7.8	159
9	Screened fifth forces lower the TRGB-calibrated Hubble constant too. Physical Review D, 2020, 102, .	4.7	29
10	New physics and the black hole mass gap. Physical Review D, 2020, 102, .	4.7	31
11	Modified gravity and the black hole mass gap. Physical Review D, 2020, 102, .	4.7	15
12	Beyond the Standard Model Explanations of GW190521. Physical Review Letters, 2020, 125, 261105.	7.8	53
13	Baryogenesis via gravitational spontaneous symmetry breaking. Physical Review D, 2019, 100, .	4.7	3
14	Self-interactions and spontaneous black hole scalarization. Physical Review D, 2019, 99, .	4.7	104
15	Stability of scalarized black hole solutions in scalar-Gauss-Bonnet gravity. Physical Review D, 2019, 99,	4.7	121
16	Local resolution of the Hubble tension: The impact of screened fifth forces on the cosmic distance ladder. Physical Review D, 2019, 100, .	4.7	79
17	Pixelated Dark Energy. Fortschritte Der Physik, 2019, 67, 1900071.	4.4	41
18	Screened fifth forces mediated by dark matter-baryon interactions: Theory and astrophysical probes. Physical Review D, 2019, 100, .	4.7	23

#	Article	IF	CITATIONS
19	Astrophysical Tests of Screened Modified Gravity. , 2019, , 195-231.		1
20	Tests of chameleon gravity. Living Reviews in Relativity, 2018, 21, 1.	26.7	232
21	Spontaneous Scalarization of Black Holes and Compact Stars from a Gauss-Bonnet Coupling. Physical Review Letters, 2018, 120, 131104.	7.8	391
22	Tests of gravity with future space-based experiments. Physical Review D, 2018, 97, .	4.7	50
23	Astrophysical tests of screened modified gravity. International Journal of Modern Physics D, 2018, 27, 1848008.	2.1	37
24	Splashback in galaxy clusters as a probe of cosmic expansion and gravity. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 033-033.	5.4	42
25	Oscillons in higher-derivative effective field theories. Physical Review D, 2018, 98, .	4.7	10
26	Superfluids and the cosmological constant problem. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 024-024.	5.4	14
27	Astrophysical tests of modified gravity: Stellar and gaseous rotation curves in dwarf galaxies. Physical Review D, 2018, 97, .	4.7	32
28	Towards strong field tests of beyond Horndeski gravity theories. Physical Review D, 2017, 95, .	4.7	52
29	Stellar pulsations in beyond Horndeski gravity theories. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 007-007.	5.4	26
30	Quasinormal modes of black holes in scalar-tensor theories with nonminimal derivative couplings. Physical Review D, 2017, 96, .	4.7	20
31	Tests of Gravity Theories Using Supermassive Black Holes. Astrophysical Journal Letters, 2017, 844, L14.	8.3	24
32	Baryogenesis in Lorentz-violating gravity theories. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 773, 186-190.	4.1	12
33	Baryogenesis via dark matter-induced symmetry breaking in the early Universe. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 774, 183-188.	4.1	7
34	Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories. Physical Review Letters, 2017, 119, 251303.	7.8	554
35	Relativistic stars in beyond Horndeski theories. Classical and Quantum Gravity, 2016, 33, 235014.	4.0	90
36	Beyond <mml:math <br="" altimg="si33.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" overflow="scroll"><mml:mi>i></mml:mi><mml:mstyle mathvariant="normal"><mml:mi>CDM</mml:mi></mml:mstyle </mml:math> : Problems, solutions, and the road ahead. Physics of the Dark Universe, 2016, 12, 56-99.	4.9	361

JEREMY SAKSTEIN

#	Article	IF	CITATIONS
37	A compendium of chameleon constraints. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 045-045.	5.4	88
38	Testing gravity using galaxy clusters: new constraints on beyond Horndeski theories. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 019-019.	5.4	71
39	Astrophysical probes of the Vainshtein mechanism: Stars and galaxies. Physical Review D, 2015, 91, .	4.7	113
40	Disformal gravity theories: A Jordan frame analysis. Physical Review D, 2015, 92, .	4.7	50
41	Testing gravity using dwarf stars. Physical Review D, 2015, 92, .	4.7	91
42	Hydrogen Burning in Low Mass Stars Constrains Scalar-Tensor Theories of Gravity. Physical Review Letters, 2015, 115, 201101.	7.8	106
43	Towards viable cosmological models of disformal theories of gravity. Physical Review D, 2015, 91, .	4.7	49
44	Solar system constraints on disformal gravity theories. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 051-051.	5.4	42
45	Testing the Vainshtein mechanism using stars and galaxies. International Journal of Modern Physics D, 2015, 24, 1544021.	2.1	10
46	Pulsar constraints on screened modified gravity. Classical and Quantum Gravity, 2014, 31, 225001.	4.0	29
47	Disformal theories of gravity: from the solar system to cosmology. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 012-012.	5.4	69
48	Detecting modified gravity in the stars. International Journal of Modern Physics D, 2014, 23, 1442002.	2.1	22
49	SUPER-screening. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2013, 719, 210-217.	4.1	16
50	Dynamics of supersymmetric chameleons. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 007-007.	5.4	17
51	Stellar oscillations in modified gravity. Physical Review D, 2013, 88, .	4.7	49
52	ASTROPHYSICAL TESTS OF MODIFIED GRAVITY: CONSTRAINTS FROM DISTANCE INDICATORS IN THE NEARBY UNIVERSE. Astrophysical Journal, 2013, 779, 39.	4.5	159
53	Modified gravity makes galaxies brighter. Physical Review D, 2012, 85, .	4.7	85
54	The origin and evolution of the mass-metallicity relation at high redshift using galics. Monthly Notices of the Royal Astronomical Society, 2011, 410, 2203-2216.	4.4	11