
Elena Kabo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7075231/publications.pdf Version: 2024-02-01

FLENA KARO

#	Article	IF	CITATIONS
1	Fatigue of railway wheels and rails under rolling contact and thermal loading—an overview. Wear, 2005, 258, 1288-1300.	3.1	251
2	An engineering model for prediction of rolling contact fatigue of railway wheels. Fatigue and Fracture of Engineering Materials and Structures, 2002, 25, 899-909.	3.4	202
3	Wheel/rail rolling contact fatigue – Probe, predict, prevent. Wear, 2014, 314, 2-12.	3.1	132
4	Material defects in rolling contact fatigue — influence of overloads and defect clusters. International Journal of Fatigue, 2002, 24, 887-894.	5.7	57
5	Fatigue initiation in railway wheels—a numerical study of the influence of defects. Wear, 2002, 253, 26-34.	3.1	55
6	A numerical study of the lateral ballast resistance in railway tracks. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2006, 220, 425-433.	2.0	54
7	Subsurface initiated rolling contact fatigue of railway wheels as generated by rail corrugation. International Journal of Solids and Structures, 2007, 44, 7975-7987.	2.7	50
8	Prediction of dynamic train–track interaction and subsequent material deterioration in the presence of insulated rail joints. Vehicle System Dynamics, 2006, 44, 718-729.	3.7	49
9	The detrimental effects of hollow wear––field experiences and numerical simulations. Wear, 2008, 265, 1283-1291.	3.1	36
10	Material defects in rolling contact fatigue of railway wheels—the influence of defect size. Wear, 2005, 258, 1194-1200.	3.1	28
11	Numerical assessment of the influence of worn wheel tread geometry on rail and wheel deterioration. Wear, 2014, 317, 77-91.	3.1	26
12	Wheel Tread Damage: A Numerical Study of Railway Wheel Tread Plasticity under Thermomechanical Loading. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2010, 224, 435-443.	2.0	25
13	The influence of track geometry irregularities on rolling contact fatigue. Wear, 2014, 314, 78-86.	3.1	23
14	Subsurface crack face displacements in railway wheels. Wear, 2005, 258, 1038-1047.	3.1	21
15	The influence of rail surface irregularities on contact forces and local stresses. Vehicle System Dynamics, 2015, 53, 68-87.	3.7	20
16	Numerical investigation of crack initiation in rails and wheels affected by martensite spots. International Journal of Fatigue, 2018, 114, 238-251.	5.7	18
17	An efficient approach to the analysis of rail surface irregularities accounting for dynamic train–track interaction and inelastic deformations. Vehicle System Dynamics, 2015, 53, 1667-1685.	3.7	17
18	A numerical study of the influence of lateral geometry irregularities on mechanical deterioration of freight tracks. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2012, 226, 575-586.	2.0	16

Elena Kabo

#	Article	IF	CITATIONS
19	Identifying the root causes of damage on the wheels of heavy haul locomotives and its mitigation. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2014, 228, 663-672.	2.0	16
20	On the Ekberg, Kabo and Andersson calculation of the Dang Van high cycle fatigue limit for rolling contact fatigue. Fatigue and Fracture of Engineering Materials and Structures, 2004, 27, 523-526.	3.4	13
21	Rolling contact fatigue prediction for rails and comparisons with test rig results. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2010, 224, 303-317.	2.0	13
22	Temperature-dependent evolution of the cyclic yield stress of railway wheel steels. Wear, 2016, 366-367, 378-382.	3.1	13
23	Integrated analysis of dynamic vehicle–track interaction and plasticity induced damage in the presence of squat defects. Wear, 2016, 366-367, 139-145.	3.1	11
24	Answer to the Letter to the Editor from M. Ciavarella and H. Maitournam. Fatigue and Fracture of Engineering Materials and Structures, 2004, 27, 527-528.	3.4	10
25	A simplified index for evaluating subsurface initiated rolling contact fatigue from field measurements. Wear, 2011, 271, 120-124.	3.1	9
26	Estimation of gauge corner and flange root degradation from rail, wheel and track geometries. Wear, 2016, 366-367, 294-302.	3.1	9
27	Stress gradient effects in surface initiated rolling contact fatigue of rails and wheels. Wear, 2016, 366-367, 188-193.	3.1	8
28	Rolling contact fatigue assessment of repair rail welds. Wear, 2019, 436-437, 203030.	3.1	8
29	Numerical assessment of the loading of rolling contact fatigue cracks close to rail surface irregularities. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43, 947-954.	3.4	8
30	Influence of plastic deformations on growth of subsurface rolling contact fatigue cracks in railway wheels. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2006, 220, 461-473.	2.0	6
31	Evaluation of stress intensity factors under multiaxial and compressive conditions using low order displacement or stress field fitting. Engineering Fracture Mechanics, 2018, 189, 204-220.	4.3	6
32	Railway wheelset fatigue life estimation based on field tests. Fatigue and Fracture of Engineering Materials and Structures, 2022, 45, 2443-2456.	3.4	5
33	Mechanical deterioration of wheels and rails under winter conditions – mechanisms and consequences. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 233, 640-648.	2.0	4
34	Numerical predictions of crack growth direction in a railhead under contact, bending and thermal loads. Engineering Fracture Mechanics, 2022, 261, 108218.	4.3	4