
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7075215/publications.pdf Version: 2024-02-01

STEEANIA DANEDO

#	Article	IF	CITATIONS
1	Sn/C composite anodes for bulk-type all-solid-state batteries. Electrochimica Acta, 2021, 395, 139104.	2.6	10
2	A Novel Li + â€Conducting Polymer Membrane Gelled by Fluorineâ€Free Electrolyte Solutions for Liâ€lon Batteries. Batteries and Supercaps, 2020, 3, 1112-1119.	2.4	6
3	Electrochemical synthesis of nanowire anodes from spent lithium ion batteries. Electrochimica Acta, 2019, 319, 481-489.	2.6	25
4	Electrochemical synthesis of nanowires electrodes and their application in energy storage devices. AIP Conference Proceedings, 2019, , .	0.3	2
5	Polymer Electrolyte Membranes Based on Nafion and a Superacidic Inorganic Additive for Fuel Cell Applications. Polymers, 2019, 11, 914.	2.0	32
6	Enhanced safety and galvanostatic performance of high voltage lithium batteries by using ionic liquids. Electrochimica Acta, 2019, 316, 1-7.	2.6	32
7	Bis(oxalato)borate and diï¬,uoro(oxalato)borate-based ionic liquids as electrolyte additives to improve the capacity retention in high voltage lithium batteries. Electrochimica Acta, 2019, 315, 17-23.	2.6	19
8	Ionic liquid electrolytes for room temperature sodium battery systems. Electrochimica Acta, 2019, 306, 317-326.	2.6	27
9	Novel bis(fluorosulfonyl)imide-based and ether-functionalized ionic liquids for lithium batteries with improved cycling properties. Electrochimica Acta, 2019, 293, 160-165.	2.6	25
10	The effect of ether-functionalisation in ionic liquids analysed by DFT calculation, infrared spectra, and Kamlet–Taft parameters. Physical Chemistry Chemical Physics, 2018, 20, 7989-7997.	1.3	16
11	Extremely Pure Mg2FeH6 as a Negative Electrode for Lithium Batteries. Energies, 2018, 11, 1952.	1.6	11
12	Gel Polymer Electrolytes Based on Silica-Added Poly(ethylene oxide) Electrospun Membranes for Lithium Batteries. Membranes, 2018, 8, 126.	1.4	6
13	Screening and Assessment of Low-Molecular-Weight Biomarkers of Milk from Cow and Water Buffalo: An Alternative Approach for the Rapid Identification of Adulterated Water Buffalo Mozzarellas. Journal of Agricultural and Food Chemistry, 2018, 66, 5410-5417.	2.4	18
14	New Etherâ€functionalized Morpholinium†and Piperidiniumâ€based Ionic Liquids as Electrolyte Components in Lithium and Lithium–Ion Batteries. ChemSusChem, 2017, 10, 2496-2504.	3.6	38
15	A high-power and fast charging Li-ion battery with outstanding cycle-life. Scientific Reports, 2017, 7, 1104.	1.6	37
16	Aging Processes in Lithiated FeSn ₂ Based Negative Electrode for Li-Ion Batteries: A New Challenge for Tin Based Intermetallic Materials. Journal of Physical Chemistry C, 2017, 121, 217-224.	1.5	13
17	NaAlH ₄ Nanoconfinement in a Mesoporous Carbon for Application in Lithium Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A1120-A1125.	1.3	14
18	A mixed mechanochemical-ceramic solid-state synthesis as simple and cost effective route to high-performance LiNi0.5Mn1.5O4 spinels Electrochimica Acta, 2017, 235, 262-269.	2.6	16

#	Article	IF	CITATIONS
19	Stabilizing the Performance of Highâ€Capacity Sulfur Composite Electrodes by a New Gel Polymer Electrolyte Configuration. ChemSusChem, 2017, 10, 3490-3496.	3.6	20
20	Sulfated titania as additive in Nafion membranes for water electrolysis applications. International Journal of Hydrogen Energy, 2017, 42, 27851-27858.	3.8	19
21	An extensive study of the Mg Fe H material obtained by reactive ball milling of MgH 2 and Fe in a molar ratio 3:1. International Journal of Hydrogen Energy, 2017, 42, 22333-22341.	3.8	15
22	Hydrides as High Capacity Anodes in Lithium Cells: An Italian "Futuro in Ricerca di Base FIRB-2010― Project. Challenges, 2017, 8, 8.	0.9	7
23	Critical Filler Concentration in Sulfated Titania-Added Nafionâ,,¢ Membranes for Fuel Cell Applications. Energies, 2016, 9, 272.	1.6	9
24	Lightweight Borohydrides Electro-Activity in Lithium Cells. Energies, 2016, 9, 238.	1.6	12
25	Structural and Spectroscopic Characterization of A Nanosized Sulfated TiO2 Filler and of Nanocomposite Nafion Membranes. Polymers, 2016, 8, 68.	2.0	19
26	Quaternary Polyethylene Oxide Electrolytes Containing Ionic Liquid for Lithium Polymer Battery. Journal of the Electrochemical Society, 2016, 163, A1175-A1180.	1.3	14
27	Novel functionalized ionic liquid with a sulfur atom in the aliphatic side chain of the pyrrolidinium cation. Electrochemistry Communications, 2016, 63, 26-29.	2.3	9
28	Investigation of the Effects of Mechanochemical Treatment on NaAlH4Based Anode Materials for Li-Ion Batteries. Journal of the Electrochemical Society, 2016, 163, A2628-A2635.	1.3	11
29	Highâ€Temperature Structural Evolution of the Disordered LiMn _{1.5} Ni _{0.5} O ₄ . Journal of the American Ceramic Society, 2016, 99, 1815-1822.	1.9	9
30	N-Alkyl-N-ethylpyrrolidinium cation-based ionic liquid electrolytes for safer lithium battery systems. Electrochimica Acta, 2016, 191, 624-630.	2.6	27
31	Low Frequency Mechanical Spectroscopy Study of Three Pyrrolidinium Based Ionic Liquids. Archives of Metallurgy and Materials, 2015, 60, 385-390.	0.6	9
32	Synthesis and Characterization of Cellulose-Based Hydrogels to Be Used as Gel Electrolytes. Membranes, 2015, 5, 810-823.	1.4	71
33	An Infrared Spectroscopy Study of the Conformational Evolution of the Bis(trifluoromethanesulfonyl)imide Ion in the Liquid and in the Glass State. Advances in Condensed Matter Physics, 2015, 2015, 1-11.	0.4	19
34	Electrochemical activity of lightweight borohydrides in lithium cells. , 2015, , .		0
35	Controlled synthesis of LiCoPO4 by a solvo-thermal method at 220°C. Materials Letters, 2015, 145, 324-327.	1.3	40
36	Electrochemical properties of a poly(ethylene carbonate)-LiTFSI electrolyte containing a pyrrolidinium-based ionic liquid. Ionics, 2015, 21, 895-900.	1.2	49

#	Article	IF	CITATIONS
37	Analysis of the self-discharge process in LiCoPO 4 electrodes: bulks. Electrochimica Acta, 2015, 179, 604-610.	2.6	27
38	Lithium Alanates as Negative Electrodes in Lithiumâ€ l on Batteries. ChemElectroChem, 2015, 2, 877-886.	1.7	30
39	An NMR study on the molecular dynamic and exchange effects in composite Nafion/sulfated titania membranes for PEMFCs. International Journal of Hydrogen Energy, 2015, 40, 14651-14660.	3.8	25
40	Novel configuration of poly(vinylidenedifluoride)-based gel polymer electrolyte for application in lithium-ion batteries. Journal of Power Sources, 2015, 294, 180-186.	4.0	95
41	H2 thermal desorption and hydride conversion reactions in Li cells of TiH2/C amorphous nanocomposites. Journal of Alloys and Compounds, 2015, 645, S46-S50.	2.8	10
42	A QuaternaryPoly(ethylene carbonate)-Lithium Bis(trifluoromethanesulfonyl)imide-Ionic Liquid-Silica Fiber Composite Polymer Electrolyte for Lithium Batteries. Electrochimica Acta, 2015, 175, 134-140.	2.6	73
43	Effect of the iron doping in LiCoPO4 cathode materials for lithium cells. Electrochimica Acta, 2015, 185, 17-27.	2.6	39
44	Functionalized Al2O3 particles as additives in proton-conducting polymer electrolyte membranes for fuel cell applications. International Journal of Hydrogen Energy, 2015, 40, 14757-14767.	3.8	24
45	Reactivity of Sodium Alanates in Lithium Batteries. Journal of Physical Chemistry C, 2015, 119, 28766-28775.	1.5	25
46	Ionic liquid mixtures with tunable physicochemical properties. Electrochimica Acta, 2015, 151, 599-608.	2.6	36
47	Nanostructured tin–carbon/ LiNi0.5Mn1.5O4 lithium-ion battery operating at low temperature. Journal of Power Sources, 2015, 275, 227-233.	4.0	42
48	A new Sn-C/LiFe0.1Co0.9PO4 full lithium-ion cell with ionic liquid-based electrolyte. Materials Letters, 2015, 139, 329-332.	1.3	33
49	Thermal stability and reduction of iron oxide nanowires at moderate temperatures. Beilstein Journal of Nanotechnology, 2014, 5, 323-328.	1.5	7
50	Fe2O3 nanowires on HOPG as precursor of new carbon-based anode for high-capacity lithium ion batteries. , 2014, , .		1
51	Reduction phases of thin iron-oxide nanowires upon thermal treatment and Li exposure. Journal of Applied Physics, 2014, 115, .	1.1	Ο
52	Polysaccharides immobilized in polypyrrole matrices are able to induce osteogenic differentiation in mouse mesenchymal stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 989-999.	1.3	12
53	Sodium-conducting ionic liquid-based electrolytes. Electrochemistry Communications, 2014, 43, 1-4.	2.3	55
54	Dynamics of Mn3+ in off-stoichiometric LiMn1.5Ni0.5O4. Journal of Alloys and Compounds, 2014, 604, 83-86.	2.8	4

#	Article	IF	CITATIONS
55	Composite PEOn:NaTFSI polymer electrolyte: Preparation, thermal andÂelectrochemical characterization. Journal of Power Sources, 2014, 248, 695-702.	4.0	122
56	Electrochemical characteristics of iron oxide nanowires during lithium-promoted conversion reaction. Journal of Power Sources, 2014, 256, 133-136.	4.0	24
57	In-situ gelled electrolyte for lithium battery: Electrochemical andÂRaman characterization. Journal of Power Sources, 2014, 245, 232-235.	4.0	8
58	Investigation of the Chemical Disorder of LiNi _{0.5} Mn _{1.5} O ₄ Lattice by Means of Extended X-ray Absorption Fine Structure Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 26471-26478.	1.5	3
59	Stabilization of Different Conformers of Bis(trifluoromethanesulfonyl)imide Anion in Ammonium-Based Ionic Liquids at Low Temperatures. Journal of Physical Chemistry A, 2014, 118, 8758-8764.	1.1	42
60	Low-Temperature Phase Transitions of 1-Butyl-1-methylpyrrolidinium Bis(trifluoromethanesulfonyl)imide Swelling a Polyvinylidenefluoride Electrospun Membrane. Journal of Physical Chemistry C, 2014, 118, 5749-5755.	1.5	24
61	An Advanced Lithium-Ion Battery Based on a Graphene Anode and a Lithium Iron Phosphate Cathode. Nano Letters, 2014, 14, 4901-4906.	4.5	402
62	An advanced ionic liquid-lithium salt electrolyte mixture based on the bis(fluoromethanesulfonyl)imide anion. Electrochemistry Communications, 2014, 43, 5-8.	2.3	4
63	SnO _{2-Nafion® nanocomposite polymer electrolytes for fuel cell applications. International Journal of Nanotechnology, 2014, 11, 882.}	0.1	17
64	Recent Advances in the Development of LiCoPO ₄ as High Voltage Cathode Material for Li-Ion Batteries. ACS Symposium Series, 2013, , 67-99.	0.5	23
65	Hybrid membranes based on sulfated titania nanoparticles as low-cost proton conductors. Ionics, 2013, 19, 1203-1206.	1.2	11
66	Mixtures of ionic liquid $\hat{a} \in$ Alkylcarbonates as electrolytes for safe lithium-ion batteries. Journal of Power Sources, 2013, 227, 8-14.	4.0	172
67	Insights about the irreversible capacity of LiNi0.5Mn1.5O4 cathode materials in lithium batteries. Electrochimica Acta, 2013, 106, 483-493.	2.6	50
68	Poly(ethylenglycol)dimethylether–lithium bis(trifluoromethanesulfonyl)imide, PEG500DME–LiTFSI, as high viscosity electrolyte for lithium ion batteries. Journal of Power Sources, 2013, 226, 329-333.	4.0	46
69	A structural, spectroscopic and electrochemical study of a lithium ion conducting Li10GeP2S12 solid electrolyte. Journal of Power Sources, 2013, 229, 117-122.	4.0	84
70	Composite Poly(ethylene oxide) Electrolytes Plasticized by <i>N</i> â€Alkylâ€ <i>N</i> â€butylpyrrolidinium Bis(trifluoromethanesulfonyl)imide for Lithium Batteries. ChemSusChem, 2013, 6, 1037-1043.	3.6	69
71	N-n-Butyl-N-methylpyrrolidinium hexafluorophosphate-added electrolyte solutions and membranes for lithium-secondary batteries. Journal of Power Sources, 2013, 233, 104-109.	4.0	17
72	Mechanically milled, nanostructured SnC composite anode for lithium ion battery. Electrochimica Acta, 2013, 90, 690-694.	2.6	30

#	Article	IF	CITATIONS
73	Nanoporous carbons from hydrothermally treated biomass as anode materials for lithium ion batteries. Microporous and Mesoporous Materials, 2013, 174, 25-33.	2.2	79
74	Magnesium hydride as a high capacity negative electrode for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 14531.	6.7	73
75	Silicon-based nanocomposite for advanced thin film anodes in lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 1556-1561.	6.7	26
76	Nickel-Layer Protected, Carbon-Coated Sulfur Electrode for Lithium Battery. Journal of the Electrochemical Society, 2012, 159, A390-A395.	1.3	27
77	Lithium Insertion into Anatase Nanotubes. Chemistry of Materials, 2012, 24, 4468-4476.	3.2	110
78	Morphological characterization of innovative electroconductive polymers in early stages of growth. Surface and Coatings Technology, 2012, 207, 286-292.	2.2	13
79	A tetraethylene glycol dimethylether-lithium bis(oxalate)borate (TEGDME-LiBOB) electrolyte for advanced lithium ion batteries. Electrochemistry Communications, 2012, 14, 43-46.	2.3	32
80	Evaluation of the interface aging process of polypyrrole–polysaccharide electrodes in a simulated physiological fluid. Electrochimica Acta, 2012, 68, 1-8.	2.6	7
81	Mitigation of the irreversible capacity and electrolyte decomposition in a LiNi0.5Mn1.5O4/nano-TiO2 Li-ion battery. Journal of Power Sources, 2011, 196, 9792-9799.	4.0	65
82	Conformational evolution of TFSI ^{â^'} in protic and aprotic ionic liquids. Journal of Raman Spectroscopy, 2011, 42, 522-528.	1.2	119
83	Ionic Liquidâ€Based Membranes as Electrolytes for Advanced Lithium Polymer Batteries. ChemSusChem, 2011, 4, 125-130.	3.6	66
84	Electrochemical impedance characterization of FeSn2 electrodes for Li-ion batteries. Electrochimica Acta, 2011, 56, 6732-6736.	2.6	23
85	Comparison between microparticles and nanostructured particles of FeSn2 as anode materials for Li-ion batteries. Journal of Power Sources, 2011, 196, 7011-7015.	4.0	43
86	A high capacity, template-electroplated Ni–Sn intermetallic electrode for lithium ion battery. Journal of Power Sources, 2011, 196, 7767-7770.	4.0	36
87	Pitch Carbon-coated Lithium Sulfide Electrode for Advanced, Lithium-metal Free-sulfur Batteries. Green, 2011, 1, .	0.4	5
88	An advanced lithium-ion battery based on a nanostructured Sn–C anode and an electrochemically stable LiTFSi-Py24TFSI ionic liquid electrolyte. Journal of Power Sources, 2010, 195, 574-579.	4.0	72
89	Determination of the safety level of an advanced lithium ion battery having a nanostructured Sn–C anode, a high voltage LiNi0.5Mn1.5O4 cathode, and a polyvinylidene fluoride-based gel electrolyte. Electrochimica Acta, 2010, 55, 4194-4200.	2.6	18
90	Characterization of an electro-active biocathode capable of dechlorinating trichloroethene and cis-dichloroethene to ethene. Biosensors and Bioelectronics, 2010, 25, 1796-1802.	5.3	113

#	Article	IF	CITATIONS
91	New type of imidazole based salts designed specifically for lithium ion batteries. Electrochimica Acta, 2010, 55, 1450-1454.	2.6	86
92	A New, Safe, Highâ€Rate and Highâ€Energy Polymer Lithiumâ€Ion Battery. Advanced Materials, 2009, 21, 4807-4810.	11.1	215
93	Polypyrroleâ€polysaccharide thin films characteristics: Electrosynthesis and biological properties. Journal of Biomedical Materials Research - Part A, 2009, 88A, 832-840.	2.1	37
94	Metal Alloy Electrode Configurations For Advanced Lithium-Ion Batteries. Fuel Cells, 2009, 9, 277-283.	1.5	20
95	Influence of mediator immobilization on the electrochemically assisted microbial dechlorination of trichloroethene (TCE) and <i>cis</i> â€dichloroethene (<i>cis</i> â€DCE). Journal of Chemical Technology and Biotechnology, 2009, 84, 864-870.	1.6	31
96	Microbial reductive dechlorination of trichloroethene to ethene with electrodes serving as electron donors without the external addition of redox mediators. Biotechnology and Bioengineering, 2009, 103, 85-91.	1.7	139
97	Mechanochemical synthesis and electrochemical properties of nanostructured electrode materials for Li ion batteries. Journal of Solid State Electrochemistry, 2009, 13, 239-243.	1.2	9
98	Nanocomposite PEO-based polymer electrolyte using a highly porous, super acid zirconia filler. Solid State Ionics, 2009, 180, 1267-1271.	1.3	65
99	A SnSb–C nanocomposite as high performance electrode for lithium ion batteries. Electrochimica Acta, 2009, 54, 4441-4444.	2.6	62
100	Proton-conducting membranes based on protic ionic liquids. Journal of Power Sources, 2008, 178, 591-595.	4.0	91
101	Effect of functionalized silica particles on cross-linked poly(vinyl alcohol) proton conducting membranes. Journal of Applied Electrochemistry, 2008, 38, 931-938.	1.5	16
102	Aprotic ionic liquids as electrolyte components in protonic membranes. Journal of Applied Electrochemistry, 2008, 38, 993-996.	1.5	25
103	A Nanostructured Sn–C Composite Lithium Battery Electrode with Unique Stability and High Electrochemical Performance. Advanced Materials, 2008, 20, 3169-3175.	11.1	393
104	Lithiated short side chain perfluorinated sulfonic ionomeric membranes: Water content and conductivity. Journal of Power Sources, 2008, 178, 783-788.	4.0	47
105	The effect of CoSn/CoSn2 phase ratio on the electrochemical behaviour of Sn40Co40C20 ternary alloy electrodes in lithium cells. Journal of Power Sources, 2008, 180, 568-575.	4.0	63
106	The role of the morphology in the response of Sb–C nanocomposite electrodes in lithium cells. Journal of Power Sources, 2008, 183, 339-343.	4.0	51
107	Synthesis and characterization of new electroactive polypyrrole–chondroitin sulphate A substrates. Bioelectrochemistry, 2008, 72, 3-9.	2.4	32
108	Electrochemical polymerization of polypyrrole–heparin nanotubes: Kinetics and morphological properties. Electrochimica Acta, 2008, 53, 2154-2160.	2.6	19

#	Article	IF	CITATIONS
109	Kinetics of trichloroethene dechlorination and methane formation by a mixed anaerobic culture in a bio-electrochemical system. Electrochimica Acta, 2008, 53, 5300-5305.	2.6	51
110	Novel Lithium Ion Batteries Based on a Tin Anode and on Manganese Oxide Cathodes. Israel Journal of Chemistry, 2008, 48, 229-234.	1.0	3
111	Trichloroethene Dechlorination and H ₂ Evolution Are Alternative Biological Pathways of Electric Charge Utilization by a Dechlorinating Culture in a Bioelectrochemical System. Environmental Science & Technology, 2008, 42, 6185-6190.	4.6	96
112	A Structural Study on Ionic-Liquid-Based Polymer Electrolyte Membranes. Journal of the Electrochemical Society, 2007, 154, G183.	1.3	38
113	Physical Properties of Proton Conducting Membranes Based on a Protic Ionic Liquid. Journal of Physical Chemistry B, 2007, 111, 12462-12467.	1.2	99
114	Electron Transfer from a Solid-State Electrode Assisted by Methyl Viologen Sustains Efficient Microbial Reductive Dechlorination of TCE. Environmental Science & Technology, 2007, 41, 2554-2559.	4.6	191
115	High-Rate, Long-Life Ni–Sn Nanostructured Electrodes for Lithium-Ion Batteries. Advanced Materials, 2007, 19, 1632-1635.	11.1	378
116	Nanostructured Sn–C Composite as an Advanced Anode Material in Highâ€Performance Lithiumâ€Ion Batteries. Advanced Materials, 2007, 19, 2336-2340.	11.1	836
117	New Types of Brönsted Acid–Base Ionic Liquids-Based Membranes for Applications in PEMFCs. ChemPhysChem, 2007, 8, 1103-1107.	1.0	104
118	A study on the state of PWA in PVDF-based proton conducting membranes by Raman spectroscopy. Solid State Ionics, 2007, 178, 527-531.	1.3	15
119	An investigation on the effect of Li+/Ni2+ cation mixing on electrochemical performances and analysis of the electron conductivity properties of LiCo0.33Mn0.33Ni0.33O2. Solid State Ionics, 2007, 178, 1390-1397.	1.3	40
120	New electrochemical process for the in situ preparation of metal electrodes for lithium-ion batteries. Electrochemistry Communications, 2007, 9, 1239-1241.	2.3	4
121	Ternary Sn–Co–C Li-ion battery electrode material prepared by high energy ball milling. Electrochemistry Communications, 2007, 9, 2075-2081.	2.3	104
122	Dual-composite polymer electrolytes with enhanced transport properties. Journal of Power Sources, 2007, 167, 510-514.	4.0	39
123	Composite gel-type polymer electrolytes for advanced, rechargeable lithium batteries. Journal of Power Sources, 2007, 170, 185-190.	4.0	103
124	An electrochemical investigation of a Sn–Co–C ternary alloy as a negative electrode in Li-ion batteries. Journal of Power Sources, 2007, 171, 928-931.	4.0	85
125	The role of the interface of tin electrodes in lithium cells: An impedance study. Journal of Power Sources, 2007, 174, 321-327.	4.0	31
126	Li-LiFePO4 rechargeable polymer battery using dual composite polymer electrolytes. Journal of Applied Electrochemistry, 2007, 38, 39-42.	1.5	16

#	Article	IF	CITATIONS
127	Role of the polymer matrix in determining the chemical–physical and electrochemical properties of gel polymer electrolytes for lithium batteries. Ionics, 2007, 13, 111-116.	1.2	5
128	High performance PEO-based polymer electrolytes and their application in rechargeable lithium polymer batteries. Ionics, 2007, 13, 281-286.	1.2	36
129	Electrodeposited Ni–Sn intermetallic electrodes for advanced lithium ion batteries. Journal of Power Sources, 2006, 160, 1336-1341.	4.0	150
130	Structural analysis of PVA-based proton conducting membranes. Solid State Ionics, 2006, 177, 2431-2435.	1.3	60
131	Plenary Address- New Types of Rechargeable Lithium and Lithium-Ion Polymer Batteries. ECS Transactions, 2006, 1, 1-7.	0.3	1
132	New Composite, Gel-Type Proton Membranes. ECS Transactions, 2006, 1, 169-174.	0.3	2
133	Composite Gel-Type Proton Membranes. Journal of the Electrochemical Society, 2006, 153, A1284.	1.3	10
134	The Ni3Sn4 intermetallic as a novel electrode in lithium cells. Journal of Power Sources, 2005, 143, 227-230.	4.0	82
135	A novel composite polymer electrolyte: Effect of mesoporous SiO2 on ionic conduction in poly(ethylene oxide)–LiCF3SO3 complex. Journal of Power Sources, 2005, 146, 402-406.	4.0	97
136	Structure and functionality of PVdF/PAN based, composite proton conducting membranes. Electrochimica Acta, 2005, 50, 3992-3997.	2.6	23
137	Silica-Added, Composite Poly(vinyl alcohol) Membranes for Fuel Cell Application. Journal of the Electrochemical Society, 2005, 152, A2400.	1.3	65
138	Sustainable High-Voltage Lithium Ion Polymer Batteries. Journal of the Electrochemical Society, 2005, 152, A1949.	1.3	68
139	Novel, Ionic-Liquid-Based, Gel-Type Proton Membranes. Electrochemical and Solid-State Letters, 2005, 8, A324.	2.2	46
140	Fast Ionic Conduction in PEO-Based Composite Electrolyte Filled with Ionic Liquid-Modified Mesoporous Silica. Electrochemical and Solid-State Letters, 2005, 8, A22.	2.2	31
141	In Situ XRD Studies of the Hydration Degree of the Polymeric Membrane in a Fuel Cell. Electrochemical and Solid-State Letters, 2004, 7, A519.	2.2	18
142	A Safe, Low-Cost, and Sustainable Lithium-Ion Polymer Battery. Journal of the Electrochemical Society, 2004, 151, A2138.	1.3	82
143	A composite proton-conducting membrane based on a poly(vinylidene)fluoride-poly(acrylonitrile), PVdF-PAN blend. Journal of Solid State Electrochemistry, 2004, 8, 804.	1.2	23
144	Mixed lithium phosphates as cathode materials for Li-Ion cells. Journal of the European Ceramic Society, 2004, 24, 1381-1384.	2.8	22

#	Article	IF	CITATIONS
145	Lithium and proton conducting gel-type membranes. Journal of Power Sources, 2004, 127, 53-57.	4.0	26
146	Nanotechnology for the progress of lithium batteries R&D. Journal of Power Sources, 2004, 129, 90-95.	4.0	46
147	Optimized Sn/SnSb lithium storage materials. Journal of Power Sources, 2004, 132, 225-228.	4.0	75
148	Iron-Substituted Lithium Titanium Spinels:  Structural and Electrochemical Characterization. Chemistry of Materials, 2003, 15, 3437-3442.	3.2	28
149	Iron-Substituted Lithium Titanium Spinels: Structural and Electrochemical Characterization ChemInform, 2003, 34, no.	0.1	1
150	New concepts for the development of lithium and proton conducting membranes. Electrochimica Acta, 2003, 48, 2009-2014.	2.6	27
151	PVdF-Based Membranes for DMFC Applications. Journal of the Electrochemical Society, 2003, 150, A1528.	1.3	37
152	"Stapled―Bis(phthalocyaninato)niobium(IV), Pc2Nb: X-ray Crystal Structure, Chemical and Electrochemical Behavior, and Theoretical Studies. Perspectives for the Use of Pc2Nb (Thin Films) as an "Optically Passive Electrode―in Electrochromic Devices. Inorganic Chemistry, 2003, 42, 283-293.	1.9	19
153	Macro- and Microscopic Properties of Nonaqueous Proton Conducting Membranes Based on PAN. Journal of the Electrochemical Society, 2003, 150, A267.	1.3	11
154	High-Resolution In-Situ Structural Measurements of the Li4/3Ti5/3O4"Zero-Strain―Insertion Material. Journal of Physical Chemistry B, 2002, 106, 3082-3086.	1.2	151
155	High Voltage Lithium Polymer Cells Using a PAN-Based Composite Electrolyte. Journal of the Electrochemical Society, 2002, 149, A414.	1.3	32
156	Electrochemical properties of metal oxides as anode materials for lithium ion batteries. Ionics, 2002, 8, 177-182.	1.2	5
157	Investigation of new types of lithium-ion battery materials. Journal of Power Sources, 2002, 105, 161-168.	4.0	21
158	Refined, in-situ EDXD structural analysis of the Li[Li1/3Ti5/3]O4 electrode under lithium insertion–extraction. Physical Chemistry Chemical Physics, 2001, 3, 845-847.	1.3	51
159	A laboratory-scale lithium-ion battery recycling process. Journal of Power Sources, 2001, 92, 65-69.	4.0	331
160	Investigation of structural and interfacial characteristics of electrode materials for lithium batteries. Journal of Power Sources, 2001, 94, 225-229.	4.0	4
161	Synthesis and characterization of Li2MxMn4â^'xO8 (M=Co, Fe) as positive active materials for lithium-ion cells. Journal of Power Sources, 2001, 97-98, 389-392.	4.0	30
162	Correlation between structural and electrochemical properties of Li metal vanadates. Journal of Power Sources, 2001, 97-98, 478-481.	4.0	15

#	Article	IF	CITATIONS
163	Poly(methyl methacrylate)-based protonic gel electrolytes: a spectroscopic study. Electrochimica Acta, 2000, 45, 1409-1414.	2.6	59
164	A new type of lithium-ion cell based on the Li4Ti5O12/Li2Co0.4Fe0.4Mn3.2O8 high-voltage, electrode combination. Electrochemistry Communications, 2000, 2, 810-813.	2.3	48
165	Gelification of liquid–polymer systems: a valid approach for the development of various types of polymer electrolyte membranes. Journal of Power Sources, 2000, 90, 13-19.	4.0	37
166	Synthesis and characterization of LiCoyNi(1âÂ^Â'y)VO4 lithium insertion materials. Solid State Ionics, 2000, 128, 43-52.	1.3	25
167	Advanced lithium ion battery materials. Ionics, 2000, 6, 127-132.	1.2	14
168	Tin Oxide-Based Lithium-Ion Polymer-Electrolyte Cells. Electrochemical and Solid-State Letters, 1999, 2, 365.	2.2	23
169	Proton Polymeric Gel Electrolyte Membranes Based on Polymethylmethacrylate. Journal of the Electrochemical Society, 1999, 146, 27-31.	1.3	93
170	Solid-state dion battery. Electrochimica Acta, 1998, 43, 1651-1653.	2.6	13
171	Electrochemical properties of a proton conducting polymer. Ionics, 1997, 3, 214-222.	1.2	1
172	Solid state supercapacitors using gel membranes as electrolytes. Solid State Ionics, 1996, 86-88, 1285-1289.	1.3	17
173	Rechargeable lithium batteries based on Li1 + xV3O8 thin films. Journal of Power Sources, 1995, 56, 193-196.	4.0	21
174	Electrochromic windows based on polyaniline, tungsten oxide and gel electrolytes. Solar Energy Materials and Solar Cells, 1995, 39, 239-246.	3.0	33
175	Impact of household batteries in landfills. Journal of Power Sources, 1995, 57, 9-12.	4.0	30
176	On the use of ionically conducting membranes for the fabrication of laminated polymer-based redox capacitors. Journal of Electroanalytical Chemistry, 1995, 396, 385-389.	1.9	15
177	Electrochromism in sandwich-type diphthalocyanines: electrochemical and spectroscopic behaviour of bis(phthalocyaninato)titanium(IV) (Ti(Pc)2) film. Synthetic Metals, 1995, 75, 37-42.	2.1	18
178	Study of the copper electrodeposition process from low molecular weight polymer electrolyte media. Polymers for Advanced Technologies, 1994, 5, 428-432.	1.6	0
179	The role of conductive polymers in advanced electrochemical technology. Electrochimica Acta, 1994, 39, 255-263.	2.6	150
180	Electrochemical characterization of an ambient temperature rechargeable Li battery based on low molecular weight polymer electrolyte. Solid State Ionics, 1994, 70-71, 654-657.	1.3	4

#	Article	IF	CITATIONS
181	Electrochemical, electrochromic and mechanical properties of the graft copolymer of poly(aniline) and nitrilic rubber. Polymer, 1994, 35, 565-572.	1.8	26
182	lonic interactions in MCF3SO3-polyether complexes containing mono-, di- and trivalent cations. Solid State lonics, 1993, 60, 55-60.	1.3	74
183	Electrochromic properties of dodecyclbenzenesulfonate doped poly(pyrrole). Electrochimica Acta, 1993, 38, 869-876.	2.6	23
184	Conducting Polymers: New Electrochromic Materials for Advanced Optical Devices. Molecular Crystals and Liquid Crystals, 1993, 229, 97-109.	0.3	45
185	Properties of electrochemically synthesized polymer electrodes Part VII: Kinetics of poly-3-methylthiophene in lithium cells. Journal of Applied Electrochemistry, 1992, 22, 189-194.	1.5	12
186	Properties of electrochemically synthesized polymer electrodes Part VIII: Kinetics of polypyrrole in polymer electrolyte cells. Journal of Applied Electrochemistry, 1992, 22, 195-199.	1.5	15
187	Copper polymer electrolytes. Solid State Ionics, 1992, 51, 215-218.	1.3	16
188	A new electrode for a poly(pyrrole)-based rechargeable battery. Journal of Power Sources, 1992, 40, 299-305.	4.0	41
189	Electrochemical properties of copper-based polymer electrolytes. Electrochimica Acta, 1992, 37, 1711-1713.	2.6	10
190	Ionic conductivity and 7Li NMR Study of Poly(ethylene glycol) complexed with lithium salts. Electrochimica Acta, 1992, 37, 1533-1539.	2.6	71
191	Properties of electrochemically synthesized polymer electrodes—X. Study of polypyrrole/dodecylbenzene sulfonate. Electrochimica Acta, 1992, 37, 1173-1182.	2.6	74
192	Properties of electrochemically synthesized polymer electrodes—IX. The effects of surfactants on polypyrrole films. Electrochimica Acta, 1992, 37, 419-423.	2.6	31
193	Electrochemical Properties and Applications of Ionically and Electronically Conducting Polymers. Materials Research Society Symposia Proceedings, 1990, 210, 179.	0.1	4
194	Polypyrrole-dodecylsulfate: 2 × 104cycles with an organic electrochromic material in a Basic Medium. Advanced Materials, 1990, 2, 480-482.	11.1	40
195	Study of the electrochromism of polypyrrole/dodecylsulfate in aqueous solutions. Electrochimica Acta, 1990, 35, 1145-1148.	2.6	74
196	Characteristics of Electrochemically Synthesized Polymer Electrodes: VI . Kinetics of the Process of Polypyrrole Oxidation. Journal of the Electrochemical Society, 1989, 136, 3729-3734.	1.3	76
197	Kinetics of the electrochemical doping process of polypyrrole. Synthetic Metals, 1989, 28, 133-137.	2.1	9
198	Properties of mixed polymer and crystalline ionic conductors. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1989, 59, 161-168.	0.6	48

#	Article	IF	CITATIONS
199	Electrochemical characterization of a polymer/polymer rechargeable lithium solid-state cell. Synthetic Metals, 1989, 28, 663-668.	2.1	31
200	Electrochemical characterization of a polymer/polymer, rechargeable solid-state lithium cell. Solid State Ionics, 1988, 28-30, 895-899.	1.3	8
201	Characteristics of electrochemically synthesized polymer electrodes in lithium cells—IV. Effects of the synthesis conditions on the performance of polypyrrole. Electrochimica Acta, 1987, 32, 1465-1468.	2.6	36
202	Characteristics of electrochemically synthesized polymer electrodes in lithium cells—III. Polypyrrole. Electrochimica Acta, 1987, 32, 1007-1011.	2.6	54
203	Properties of electrochemically synthesized polymers—V. The polymer electrode/polymer electrolyte interface. Electrochimica Acta, 1987, 32, 1461-1464.	2.6	19
204	Kinetics of semiconducting polymer electrodes in lithium cells. Journal of Power Sources, 1987, 19, 27-36.	4.0	21
205	The electrochemical characteristics of a polydithienothiophene electrode in lithium cells. Electrochimica Acta, 1986, 31, 783-788.	2.6	27
206	The electrochromic characteristics of titanium oxide thin film electrodes. Solid State Ionics, 1986, 20, 197-202.	1.3	55
207	Characteristics of electrochemically synthesized polymer electrodes in lithium cells—II. Polythiophene. Electrochimica Acta, 1986, 31, 1597-1600.	2.6	48
208	Rechargeable Li / Li1 + x  V 3 O 8 Cells. Journal of the Electrochemical Societ	ty, 1 983, 1	130,0B225-12
209	Non-stoichiometric molybdenum oxides as cathodes for lithium cells. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1980, 108, 169-180.	0.3	24
210	Non-stoichiometric molybdenum oxides as cathodes for lithium cells. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1980, 108, 181-190.	0.3	15
211	Non-stoichiometric molybdenum oxides as cathodes for lithium cells. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1979, 102, 333-341.	0.3	28
212	Non-stoichiometric molybdenum oxides as cathodes for lithium cells. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1979, 102, 343-349.	0.3	21
213	On the possibility of using silver salts other than Ag2CrO4 in organic lithium cells. Journal of Power Sources, 1978, 3, 347-357.	4.0	11
214	Nonaqueous Batteries with BiF3 Cathodes. Journal of the Electrochemical Society, 1978, 125, 511-515.	1.3	20