Stefania Panero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7075215/publications.pdf

Version: 2024-02-01

214 papers

10,503 citations

54 h-index 92 g-index

221 all docs

221 docs citations

times ranked

221

10214 citing authors

#	Article	IF	CITATIONS
1	Nanostructured Sn–C Composite as an Advanced Anode Material in Highâ€Performance Lithiumâ€lon Batteries. Advanced Materials, 2007, 19, 2336-2340.	21.0	836
2	An Advanced Lithium-Ion Battery Based on a Graphene Anode and a Lithium Iron Phosphate Cathode. Nano Letters, 2014, 14, 4901-4906.	9.1	402
3	A Nanostructured Sn–C Composite Lithium Battery Electrode with Unique Stability and High Electrochemical Performance. Advanced Materials, 2008, 20, 3169-3175.	21.0	393
4	High-Rate, Long-Life Ni–Sn Nanostructured Electrodes for Lithium-Ion Batteries. Advanced Materials, 2007, 19, 1632-1635.	21.0	378
5	A laboratory-scale lithium-ion battery recycling process. Journal of Power Sources, 2001, 92, 65-69.	7.8	331
6	A New, Safe, Highâ€Rate and Highâ€Energy Polymer Lithiumâ€lon Battery. Advanced Materials, 2009, 21, 4807-4810.	21.0	215
7	Electron Transfer from a Solid-State Electrode Assisted by Methyl Viologen Sustains Efficient Microbial Reductive Dechlorination of TCE. Environmental Science & Environmental Science & 2554-2559.	10.0	191
8	Mixtures of ionic liquid – Alkylcarbonates as electrolytes for safe lithium-ion batteries. Journal of Power Sources, 2013, 227, 8-14.	7.8	172
9	High-Resolution In-Situ Structural Measurements of the Li4/3Ti5/3O4"Zero-Strain―Insertion Material. Journal of Physical Chemistry B, 2002, 106, 3082-3086.	2.6	151
10	The role of conductive polymers in advanced electrochemical technology. Electrochimica Acta, 1994, 39, 255-263.	5.2	150
11	Electrodeposited Ni–Sn intermetallic electrodes for advanced lithium ion batteries. Journal of Power Sources, 2006, 160, 1336-1341.	7.8	150
12	Microbial reductive dechlorination of trichloroethene to ethene with electrodes serving as electron donors without the external addition of redox mediators. Biotechnology and Bioengineering, 2009, 103, 85-91.	3.3	139
13	Composite PEOn:NaTFSI polymer electrolyte: Preparation, thermal andÂelectrochemical characterization. Journal of Power Sources, 2014, 248, 695-702.	7.8	122
14	Conformational evolution of TFSI ^{â^'} in protic and aprotic ionic liquids. Journal of Raman Spectroscopy, 2011, 42, 522-528.	2.5	119
15	Characterization of an electro-active biocathode capable of dechlorinating trichloroethene and cis-dichloroethene to ethene. Biosensors and Bioelectronics, 2010, 25, 1796-1802.	10.1	113
16	Lithium Insertion into Anatase Nanotubes. Chemistry of Materials, 2012, 24, 4468-4476.	6.7	110
17	New Types of Brönsted Acid–Base Ionic Liquids-Based Membranes for Applications in PEMFCs. ChemPhysChem, 2007, 8, 1103-1107.	2.1	104
18	Ternary Sn–Co–C Li-ion battery electrode material prepared by high energy ball milling. Electrochemistry Communications, 2007, 9, 2075-2081.	4.7	104

#	Article	IF	Citations
19	Rechargeable Li / Li1 + x  V 3 O 8 Cells. Journal of the Electrochemical Society	, .1.9 83, 1	13 0 ,0k225-12
20	Composite gel-type polymer electrolytes for advanced, rechargeable lithium batteries. Journal of Power Sources, 2007, 170, 185-190.	7.8	103
21	Physical Properties of Proton Conducting Membranes Based on a Protic Ionic Liquid. Journal of Physical Chemistry B, 2007, 111, 12462-12467.	2.6	99
22	A novel composite polymer electrolyte: Effect of mesoporous SiO2 on ionic conduction in poly(ethylene oxide)–LiCF3SO3 complex. Journal of Power Sources, 2005, 146, 402-406.	7.8	97
23	Trichloroethene Dechlorination and H ₂ Evolution Are Alternative Biological Pathways of Electric Charge Utilization by a Dechlorinating Culture in a Bioelectrochemical System. Environmental Science & Environmenta	10.0	96
24	Novel configuration of poly(vinylidenedifluoride)-based gel polymer electrolyte for application in lithium-ion batteries. Journal of Power Sources, 2015, 294, 180-186.	7.8	95
25	Proton Polymeric Gel Electrolyte Membranes Based on Polymethylmethacrylate. Journal of the Electrochemical Society, 1999, 146, 27-31.	2.9	93
26	Proton-conducting membranes based on protic ionic liquids. Journal of Power Sources, 2008, 178, 591-595.	7.8	91
27	New type of imidazole based salts designed specifically for lithium ion batteries. Electrochimica Acta, 2010, 55, 1450-1454.	5.2	86
28	An electrochemical investigation of a Sn–Co–C ternary alloy as a negative electrode in Li-ion batteries. Journal of Power Sources, 2007, 171, 928-931.	7.8	85
29	A structural, spectroscopic and electrochemical study of a lithium ion conducting Li10GeP2S12 solid electrolyte. Journal of Power Sources, 2013, 229, 117-122.	7.8	84
30	A Safe, Low-Cost, and Sustainable Lithium-Ion Polymer Battery. Journal of the Electrochemical Society, 2004, 151, A2138.	2.9	82
31	The Ni3Sn4 intermetallic as a novel electrode in lithium cells. Journal of Power Sources, 2005, 143, 227-230.	7.8	82
32	Nanoporous carbons from hydrothermally treated biomass as anode materials for lithium ion batteries. Microporous and Mesoporous Materials, 2013, 174, 25-33.	4.4	79
33	Characteristics of Electrochemically Synthesized Polymer Electrodes: VI. Kinetics of the Process of Polypyrrole Oxidation. Journal of the Electrochemical Society, 1989, 136, 3729-3734.	2.9	76
34	Optimized Sn/SnSb lithium storage materials. Journal of Power Sources, 2004, 132, 225-228.	7.8	75
35	Study of the electrochromism of polypyrrole/dodecylsulfate in aqueous solutions. Electrochimica Acta, 1990, 35, 1145-1148.	5.2	74
36	Properties of electrochemically synthesized polymer electrodesâ€"X. Study of polypyrrole/dodecylbenzene sulfonate. Electrochimica Acta, 1992, 37, 1173-1182.	5.2	74

#	Article	IF	Citations
37	lonic interactions in MCF3SO3-polyether complexes containing mono-, di- and trivalent cations. Solid State Ionics, 1993, 60, 55-60.	2.7	74
38	Magnesium hydride as a high capacity negative electrode for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 14531.	6.7	73
39	A QuaternaryPoly(ethylene carbonate)-Lithium Bis(trifluoromethanesulfonyl)imide-Ionic Liquid-Silica Fiber Composite Polymer Electrolyte for Lithium Batteries. Electrochimica Acta, 2015, 175, 134-140.	5.2	73
40	An advanced lithium-ion battery based on a nanostructured Snâ€"C anode and an electrochemically stable LiTFSi-Py24TFSI ionic liquid electrolyte. Journal of Power Sources, 2010, 195, 574-579.	7.8	72
41	Ionic conductivity and 7Li NMR Study of Poly(ethylene glycol) complexed with lithium salts. Electrochimica Acta, 1992, 37, 1533-1539.	5.2	71
42	Synthesis and Characterization of Cellulose-Based Hydrogels to Be Used as Gel Electrolytes. Membranes, 2015, 5, 810-823.	3.0	71
43	Composite Poly(ethylene oxide) Electrolytes Plasticized by <i>N</i> à€Alkylâ€ <i>N</i> å6butylpyrrolidinium Bis(trifluoromethanesulfonyl)imide for Lithium Batteries. ChemSusChem, 2013, 6, 1037-1043.	6.8	69
44	Sustainable High-Voltage Lithium Ion Polymer Batteries. Journal of the Electrochemical Society, 2005, 152, A1949.	2.9	68
45	Ionic Liquidâ€Based Membranes as Electrolytes for Advanced Lithium Polymer Batteries. ChemSusChem, 2011, 4, 125-130.	6.8	66
46	Silica-Added, Composite Poly(vinyl alcohol) Membranes for Fuel Cell Application. Journal of the Electrochemical Society, 2005, 152, A2400.	2.9	65
47	Nanocomposite PEO-based polymer electrolyte using a highly porous, super acid zirconia filler. Solid State Ionics, 2009, 180, 1267-1271.	2.7	65
48	Mitigation of the irreversible capacity and electrolyte decomposition in a LiNi0.5Mn1.5O4/nano-TiO2 Li-ion battery. Journal of Power Sources, 2011, 196, 9792-9799.	7.8	65
49	The effect of CoSn/CoSn2 phase ratio on the electrochemical behaviour of Sn40Co40C20 ternary alloy electrodes in lithium cells. Journal of Power Sources, 2008, 180, 568-575.	7.8	63
50	A SnSb–C nanocomposite as high performance electrode for lithium ion batteries. Electrochimica Acta, 2009, 54, 4441-4444.	5.2	62
51	Structural analysis of PVA-based proton conducting membranes. Solid State Ionics, 2006, 177, 2431-2435.	2.7	60
52	Poly(methyl methacrylate)-based protonic gel electrolytes: a spectroscopic study. Electrochimica Acta, 2000, 45, 1409-1414.	5.2	59
53	The electrochromic characteristics of titanium oxide thin film electrodes. Solid State Ionics, 1986, 20, 197-202.	2.7	55
54	Sodium-conducting ionic liquid-based electrolytes. Electrochemistry Communications, 2014, 43, 1-4.	4.7	55

#	Article	IF	Citations
55	Characteristics of electrochemically synthesized polymer electrodes in lithium cells—III. Polypyrrole. Electrochimica Acta, 1987, 32, 1007-1011.	5.2	54
56	Refined, in-situ EDXD structural analysis of the Li[Li1/3Ti5/3]O4 electrode under lithium insertion–extraction. Physical Chemistry Chemical Physics, 2001, 3, 845-847.	2.8	51
57	The role of the morphology in the response of Sb–C nanocomposite electrodes in lithium cells. Journal of Power Sources, 2008, 183, 339-343.	7.8	51
58	Kinetics of trichloroethene dechlorination and methane formation by a mixed anaerobic culture in a bio-electrochemical system. Electrochimica Acta, 2008, 53, 5300-5305.	5.2	51
59	Insights about the irreversible capacity of LiNi0.5Mn1.5O4 cathode materials in lithium batteries. Electrochimica Acta, 2013, 106, 483-493.	5.2	50
60	Electrochemical properties of a poly(ethylene carbonate)-LiTFSI electrolyte containing a pyrrolidinium-based ionic liquid. Ionics, 2015, 21, 895-900.	2.4	49
61	Characteristics of electrochemically synthesized polymer electrodes in lithium cells—II. Polythiophene. Electrochimica Acta, 1986, 31, 1597-1600.	5.2	48
62	Properties of mixed polymer and crystalline ionic conductors. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1989, 59, 161-168.	0.6	48
63	A new type of lithium-ion cell based on the Li4Ti5O12/Li2Co0.4Fe0.4Mn3.2O8 high-voltage, electrode combination. Electrochemistry Communications, 2000, 2, 810-813.	4.7	48
64	Lithiated short side chain perfluorinated sulfonic ionomeric membranes: Water content and conductivity. Journal of Power Sources, 2008, 178, 783-788.	7.8	47
65	Nanotechnology for the progress of lithium batteries R&D. Journal of Power Sources, 2004, 129, 90-95.	7.8	46
66	Novel, Ionic-Liquid-Based, Gel-Type Proton Membranes. Electrochemical and Solid-State Letters, 2005, 8, A324.	2.2	46
67	Poly(ethylenglycol)dimethylether–lithium bis(trifluoromethanesulfonyl)imide, PEG500DME–LiTFSI, as high viscosity electrolyte for lithium ion batteries. Journal of Power Sources, 2013, 226, 329-333.	7.8	46
68	Conducting Polymers: New Electrochromic Materials for Advanced Optical Devices. Molecular Crystals and Liquid Crystals, 1993, 229, 97-109.	0.3	45
69	Comparison between microparticles and nanostructured particles of FeSn2 as anode materials for Li-ion batteries. Journal of Power Sources, 2011, 196, 7011-7015.	7.8	43
70	Stabilization of Different Conformers of Bis(trifluoromethanesulfonyl)imide Anion in Ammonium-Based Ionic Liquids at Low Temperatures. Journal of Physical Chemistry A, 2014, 118, 8758-8764.	2.5	42
71	Nanostructured tin–carbon/ LiNi0.5Mn1.5O4 lithium-ion battery operating at low temperature. Journal of Power Sources, 2015, 275, 227-233.	7.8	42
72	A new electrode for a poly(pyrrole)-based rechargeable battery. Journal of Power Sources, 1992, 40, 299-305.	7.8	41

#	Article	IF	CITATIONS
73	Polypyrrole-dodecylsulfate: 2 \tilde{A} — 104cycles with an organic electrochromic material in a Basic Medium. Advanced Materials, 1990, 2, 480-482.	21.0	40
74	An investigation on the effect of Li+/Ni2+ cation mixing on electrochemical performances and analysis of the electron conductivity properties of LiCo0.33Mn0.33Ni0.33O2. Solid State Ionics, 2007, 178, 1390-1397.	2.7	40
75	Controlled synthesis of LiCoPO4 by a solvo-thermal method at 220°C. Materials Letters, 2015, 145, 324-327.	2.6	40
76	Dual-composite polymer electrolytes with enhanced transport properties. Journal of Power Sources, 2007, 167, 510-514.	7.8	39
77	Effect of the iron doping in LiCoPO4 cathode materials for lithium cells. Electrochimica Acta, 2015, 185, 17-27.	5.2	39
78	A Structural Study on Ionic-Liquid-Based Polymer Electrolyte Membranes. Journal of the Electrochemical Society, 2007, 154, G183.	2.9	38
79	New Etherâ€functionalized Morpholiniumâ€and Piperidiniumâ€based Ionic Liquids as Electrolyte Components in Lithium and Lithium–Ion Batteries. ChemSusChem, 2017, 10, 2496-2504.	6.8	38
80	Gelification of liquid–polymer systems: a valid approach for the development of various types of polymer electrolyte membranes. Journal of Power Sources, 2000, 90, 13-19.	7.8	37
81	PVdF-Based Membranes for DMFC Applications. Journal of the Electrochemical Society, 2003, 150, A1528.	2.9	37
82	Polypyrroleâ€polysaccharide thin films characteristics: Electrosynthesis and biological properties. Journal of Biomedical Materials Research - Part A, 2009, 88A, 832-840.	4.0	37
83	A high-power and fast charging Li-ion battery with outstanding cycle-life. Scientific Reports, 2017, 7, 1104.	3.3	37
84	Characteristics of electrochemically synthesized polymer electrodes in lithium cellsâ€"IV. Effects of the synthesis conditions on the performance of polypyrrole. Electrochimica Acta, 1987, 32, 1465-1468.	5.2	36
85	High performance PEO-based polymer electrolytes and their application in rechargeable lithium polymer batteries. Ionics, 2007, 13, 281-286.	2.4	36
86	A high capacity, template-electroplated Ni–Sn intermetallic electrode for lithium ion battery. Journal of Power Sources, 2011, 196, 7767-7770.	7.8	36
87	Ionic liquid mixtures with tunable physicochemical properties. Electrochimica Acta, 2015, 151, 599-608.	5.2	36
88	Electrochromic windows based on polyaniline, tungsten oxide and gel electrolytes. Solar Energy Materials and Solar Cells, 1995, 39, 239-246.	6.2	33
89	A new Sn-C/LiFe0.1Co0.9PO4 full lithium-ion cell with ionic liquid-based electrolyte. Materials Letters, 2015, 139, 329-332.	2.6	33
90	High Voltage Lithium Polymer Cells Using a PAN-Based Composite Electrolyte. Journal of the Electrochemical Society, 2002, 149, A414.	2.9	32

#	Article	IF	Citations
91	Synthesis and characterization of new electroactive polypyrrole–chondroitin sulphate A substrates. Bioelectrochemistry, 2008, 72, 3-9.	4.6	32
92	A tetraethylene glycol dimethylether-lithium bis(oxalate)borate (TEGDME-LiBOB) electrolyte for advanced lithium ion batteries. Electrochemistry Communications, 2012, 14, 43-46.	4.7	32
93	Polymer Electrolyte Membranes Based on Nafion and a Superacidic Inorganic Additive for Fuel Cell Applications. Polymers, 2019, 11, 914.	4.5	32
94	Enhanced safety and galvanostatic performance of high voltage lithium batteries by using ionic liquids. Electrochimica Acta, 2019, 316, 1-7.	5.2	32
95	Electrochemical characterization of a polymer/polymer rechargeable lithium solid-state cell. Synthetic Metals, 1989, 28, 663-668.	3.9	31
96	Properties of electrochemically synthesized polymer electrodesâ€"IX. The effects of surfactants on polypyrrole films. Electrochimica Acta, 1992, 37, 419-423.	5.2	31
97	Fast Ionic Conduction in PEO-Based Composite Electrolyte Filled with Ionic Liquid-Modified Mesoporous Silica. Electrochemical and Solid-State Letters, 2005, 8, A22.	2.2	31
98	The role of the interface of tin electrodes in lithium cells: An impedance study. Journal of Power Sources, 2007, 174, 321-327.	7.8	31
99	Influence of mediator immobilization on the electrochemically assisted microbial dechlorination of trichloroethene (TCE) and ⟨i⟩cis⟨ i⟩â€dichloroethene (⟨i⟩cis⟨ i⟩â€DCE). Journal of Chemical Technology and Biotechnology, 2009, 84, 864-870.	3.2	31
100	Impact of household batteries in landfills. Journal of Power Sources, 1995, 57, 9-12.	7.8	30
101	Synthesis and characterization of Li2MxMn4â^'xO8 (M=Co, Fe) as positive active materials for lithium-ion cells. Journal of Power Sources, 2001, 97-98, 389-392.	7.8	30
102	Mechanically milled, nanostructured SnC composite anode for lithium ion battery. Electrochimica Acta, 2013, 90, 690-694.	5.2	30
103	Lithium Alanates as Negative Electrodes in Lithiumâ€lon Batteries. ChemElectroChem, 2015, 2, 877-886.	3.4	30
104	Non-stoichiometric molybdenum oxides as cathodes for lithium cells. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1979, 102, 333-341.	0.1	28
105	Iron-Substituted Lithium Titanium Spinels:  Structural and Electrochemical Characterization. Chemistry of Materials, 2003, 15, 3437-3442.	6.7	28
106	The electrochemical characteristics of a polydithienothiophene electrode in lithium cells. Electrochimica Acta, 1986, 31, 783-788.	5.2	27
107	New concepts for the development of lithium and proton conducting membranes. Electrochimica Acta, 2003, 48, 2009-2014.	5.2	27
108	Nickel-Layer Protected, Carbon-Coated Sulfur Electrode for Lithium Battery. Journal of the Electrochemical Society, 2012, 159, A390-A395.	2.9	27

#	Article	IF	CITATIONS
109	Analysis of the self-discharge process in LiCoPO 4 electrodes: bulks. Electrochimica Acta, 2015, 179, 604-610.	5 . 2	27
110	N-Alkyl-N-ethylpyrrolidinium cation-based ionic liquid electrolytes for safer lithium battery systems. Electrochimica Acta, 2016, 191, 624-630.	5.2	27
111	Ionic liquid electrolytes for room temperature sodium battery systems. Electrochimica Acta, 2019, 306, 317-326.	5.2	27
112	Electrochemical, electrochromic and mechanical properties of the graft copolymer of poly(aniline) and nitrilic rubber. Polymer, 1994, 35, 565-572.	3.8	26
113	Lithium and proton conducting gel-type membranes. Journal of Power Sources, 2004, 127, 53-57.	7.8	26
114	Silicon-based nanocomposite for advanced thin film anodes in lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 1556-1561.	6.7	26
115	Synthesis and characterization of LiCoyNi($1\tilde{A}$ ¢ \hat{A} ^ \hat{A} 'y)VO4 lithium insertion materials. Solid State Ionics, 2000, 128, 43-52.	2.7	25
116	Aprotic ionic liquids as electrolyte components in protonic membranes. Journal of Applied Electrochemistry, 2008, 38, 993-996.	2.9	25
117	An NMR study on the molecular dynamic and exchange effects in composite Nafion/sulfated titania membranes for PEMFCs. International Journal of Hydrogen Energy, 2015, 40, 14651-14660.	7.1	25
118	Reactivity of Sodium Alanates in Lithium Batteries. Journal of Physical Chemistry C, 2015, 119, 28766-28775.	3.1	25
119	Electrochemical synthesis of nanowire anodes from spent lithium ion batteries. Electrochimica Acta, 2019, 319, 481-489.	5.2	25
120	Novel bis(fluorosulfonyl)imide-based and ether-functionalized ionic liquids for lithium batteries with improved cycling properties. Electrochimica Acta, 2019, 293, 160-165.	5.2	25
121	Non-stoichiometric molybdenum oxides as cathodes for lithium cells. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1980, 108, 169-180.	0.1	24
122	Electrochemical characteristics of iron oxide nanowires during lithium-promoted conversion reaction. Journal of Power Sources, 2014, 256, 133-136.	7.8	24
123	Low-Temperature Phase Transitions of 1-Butyl-1-methylpyrrolidinium Bis(trifluoromethanesulfonyl)imide Swelling a Polyvinylidenefluoride Electrospun Membrane. Journal of Physical Chemistry C, 2014, 118, 5749-5755.	3.1	24
124	Functionalized Al2O3 particles as additives in proton-conducting polymer electrolyte membranes for fuel cell applications. International Journal of Hydrogen Energy, 2015, 40, 14757-14767.	7.1	24
125	Electrochromic properties of dodecyclbenzenesulfonate doped poly(pyrrole). Electrochimica Acta, 1993, 38, 869-876.	5.2	23
126	Tin Oxide-Based Lithium-Ion Polymer-Electrolyte Cells. Electrochemical and Solid-State Letters, 1999, 2, 365.	2.2	23

#	Article	IF	Citations
127	A composite proton-conducting membrane based on a poly(vinylidene)fluoride-poly(acrylonitrile), PVdF-PAN blend. Journal of Solid State Electrochemistry, 2004, 8, 804.	2.5	23
128	Structure and functionality of PVdF/PAN based, composite proton conducting membranes. Electrochimica Acta, 2005, 50, 3992-3997.	5.2	23
129	Electrochemical impedance characterization of FeSn2 electrodes for Li-ion batteries. Electrochimica Acta, 2011, 56, 6732-6736.	5.2	23
130	Recent Advances in the Development of LiCoPO ₄ as High Voltage Cathode Material for Li-lon Batteries. ACS Symposium Series, 2013, , 67-99.	0.5	23
131	Mixed lithium phosphates as cathode materials for Li-lon cells. Journal of the European Ceramic Society, 2004, 24, 1381-1384.	5.7	22
132	Non-stoichiometric molybdenum oxides as cathodes for lithium cells. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1979, 102, 343-349.	0.1	21
133	Kinetics of semiconducting polymer electrodes in lithium cells. Journal of Power Sources, 1987, 19, 27-36.	7.8	21
134	Rechargeable lithium batteries based on Li1 + xV3O8 thin films. Journal of Power Sources, 1995, 56, 193-196.	7.8	21
135	Investigation of new types of lithium-ion battery materials. Journal of Power Sources, 2002, 105, 161-168.	7.8	21
136	Nonaqueous Batteries with BiF3 Cathodes. Journal of the Electrochemical Society, 1978, 125, 511-515.	2.9	20
137	Metal Alloy Electrode Configurations For Advanced Lithium-Ion Batteries. Fuel Cells, 2009, 9, 277-283.	2.4	20
138	Stabilizing the Performance of High apacity Sulfur Composite Electrodes by a New Gel Polymer Electrolyte Configuration. ChemSusChem, 2017, 10, 3490-3496.	6.8	20
139	Properties of electrochemically synthesized polymersâ€"V. The polymer electrode/polymer electrolyte interface. Electrochimica Acta, 1987, 32, 1461-1464.	5.2	19
140	"Stapled―Bis(phthalocyaninato)niobium(IV), Pc2Nb: X-ray Crystal Structure, Chemical and Electrochemical Behavior, and Theoretical Studies. Perspectives for the Use of Pc2Nb (Thin Films) as an "Optically Passive Electrode―in Electrochromic Devices. Inorganic Chemistry, 2003, 42, 283-293.	4.0	19
141	Electrochemical polymerization of polypyrrole–heparin nanotubes: Kinetics and morphological properties. Electrochimica Acta, 2008, 53, 2154-2160.	5.2	19
142	An Infrared Spectroscopy Study of the Conformational Evolution of the Bis(trifluoromethanesulfonyl)imide Ion in the Liquid and in the Glass State. Advances in Condensed Matter Physics, 2015, 2015, 1-11.	1.1	19
143	Structural and Spectroscopic Characterization of A Nanosized Sulfated TiO2 Filler and of Nanocomposite Nafion Membranes. Polymers, 2016, 8, 68.	4.5	19
144	Sulfated titania as additive in Nafion membranes for water electrolysis applications. International Journal of Hydrogen Energy, 2017, 42, 27851-27858.	7.1	19

#	Article	IF	Citations
145	Bis(oxalato)borate and diï¬,uoro(oxalato)borate-based ionic liquids as electrolyte additives to improve the capacity retention in high voltage lithium batteries. Electrochimica Acta, 2019, 315, 17-23.	5.2	19
146	Electrochromism in sandwich-type diphthalocyanines: electrochemical and spectroscopic behaviour of bis(phthalocyaninato)titanium(IV) (Ti(Pc)2) film. Synthetic Metals, 1995, 75, 37-42.	3.9	18
147	In Situ XRD Studies of the Hydration Degree of the Polymeric Membrane in a Fuel Cell. Electrochemical and Solid-State Letters, 2004, 7, A519.	2.2	18
148	Determination of the safety level of an advanced lithium ion battery having a nanostructured Sn–C anode, a high voltage LiNi0.5Mn1.5O4 cathode, and a polyvinylidene fluoride-based gel electrolyte. Electrochimica Acta, 2010, 55, 4194-4200.	5.2	18
149	Screening and Assessment of Low-Molecular-Weight Biomarkers of Milk from Cow and Water Buffalo: An Alternative Approach for the Rapid Identification of Adulterated Water Buffalo Mozzarellas. Journal of Agricultural and Food Chemistry, 2018, 66, 5410-5417.	5 . 2	18
150	Solid state supercapacitors using gel membranes as electrolytes. Solid State Ionics, 1996, 86-88, 1285-1289.	2.7	17
151	N-n-Butyl-N-methylpyrrolidinium hexafluorophosphate-added electrolyte solutions and membranes for lithium-secondary batteries. Journal of Power Sources, 2013, 233, 104-109.	7.8	17
152	SnO<SUB align="right">2-NafionÂ $^{\odot}$ nanocomposite polymer electrolytes for fuel cell applications. International Journal of Nanotechnology, 2014, 11, 882.	0.2	17
153	Copper polymer electrolytes. Solid State Ionics, 1992, 51, 215-218.	2.7	16
154	Li-LiFePO4 rechargeable polymer battery using dual composite polymer electrolytes. Journal of Applied Electrochemistry, 2007, 38, 39-42.	2.9	16
155	Effect of functionalized silica particles on cross-linked poly(vinyl alcohol) proton conducting membranes. Journal of Applied Electrochemistry, 2008, 38, 931-938.	2.9	16
156	A mixed mechanochemical-ceramic solid-state synthesis as simple and cost effective route to high-performance LiNi0.5Mn1.5O4 spinels Electrochimica Acta, 2017, 235, 262-269.	5 . 2	16
157	The effect of ether-functionalisation in ionic liquids analysed by DFT calculation, infrared spectra, and Kamlet–Taft parameters. Physical Chemistry Chemical Physics, 2018, 20, 7989-7997.	2.8	16
158	Non-stoichiometric molybdenum oxides as cathodes for lithium cells. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1980, 108, 181-190.	0.1	15
159	Properties of electrochemically synthesized polymer electrodes Part VIII: Kinetics of polypyrrole in polymer electrolyte cells. Journal of Applied Electrochemistry, 1992, 22, 195-199.	2.9	15
160	On the use of ionically conducting membranes for the fabrication of laminated polymer-based redox capacitors. Journal of Electroanalytical Chemistry, 1995, 396, 385-389.	3.8	15
161	Correlation between structural and electrochemical properties of Li metal vanadates. Journal of Power Sources, 2001, 97-98, 478-481.	7.8	15
162	A study on the state of PWA in PVDF-based proton conducting membranes by Raman spectroscopy. Solid State Ionics, 2007, 178, 527-531.	2.7	15

#	Article	lF	Citations
163	An extensive study of the Mg Fe H material obtained by reactive ball milling of MgH 2 and Fe in a molar ratio 3:1. International Journal of Hydrogen Energy, 2017, 42, 22333-22341.	7.1	15
164	Advanced lithium ion battery materials. Ionics, 2000, 6, 127-132.	2.4	14
165	Quaternary Polyethylene Oxide Electrolytes Containing Ionic Liquid for Lithium Polymer Battery. Journal of the Electrochemical Society, 2016, 163, A1175-A1180.	2.9	14
166	NaAlH ₄ Nanoconfinement in a Mesoporous Carbon for Application in Lithium Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A1120-A1125.	2.9	14
167	Solid-state dion battery. Electrochimica Acta, 1998, 43, 1651-1653.	5.2	13
168	Morphological characterization of innovative electroconductive polymers in early stages of growth. Surface and Coatings Technology, 2012, 207, 286-292.	4.8	13
169	Aging Processes in Lithiated FeSn ₂ Based Negative Electrode for Li-Ion Batteries: A New Challenge for Tin Based Intermetallic Materials. Journal of Physical Chemistry C, 2017, 121, 217-224.	3.1	13
170	Properties of electrochemically synthesized polymer electrodes Part VII: Kinetics of poly-3-methylthiophene in lithium cells. Journal of Applied Electrochemistry, 1992, 22, 189-194.	2.9	12
171	Polysaccharides immobilized in polypyrrole matrices are able to induce osteogenic differentiation in mouse mesenchymal stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 989-999.	2.7	12
172	Lightweight Borohydrides Electro-Activity in Lithium Cells. Energies, 2016, 9, 238.	3.1	12
173	On the possibility of using silver salts other than Ag2CrO4 in organic lithium cells. Journal of Power Sources, 1978, 3, 347-357.	7.8	11
174	Macro- and Microscopic Properties of Nonaqueous Proton Conducting Membranes Based on PAN. Journal of the Electrochemical Society, 2003, 150, A267.	2.9	11
175	Hybrid membranes based on sulfated titania nanoparticles as low-cost proton conductors. lonics, 2013, 19, 1203-1206.	2.4	11
176	Investigation of the Effects of Mechanochemical Treatment on NaAlH4Based Anode Materials for Li-lon Batteries. Journal of the Electrochemical Society, 2016, 163, A2628-A2635.	2.9	11
177	Extremely Pure Mg2FeH6 as a Negative Electrode for Lithium Batteries. Energies, 2018, 11, 1952.	3.1	11
178	Electrochemical properties of copper-based polymer electrolytes. Electrochimica Acta, 1992, 37, 1711-1713.	5.2	10
179	Composite Gel-Type Proton Membranes. Journal of the Electrochemical Society, 2006, 153, A1284.	2.9	10
180	H2 thermal desorption and hydride conversion reactions in Li cells of TiH2/C amorphous nanocomposites. Journal of Alloys and Compounds, 2015, 645, S46-S50.	5. 5	10

#	Article	IF	CITATIONS
181	Sn/C composite anodes for bulk-type all-solid-state batteries. Electrochimica Acta, 2021, 395, 139104.	5.2	10
182	Kinetics of the electrochemical doping process of polypyrrole. Synthetic Metals, 1989, 28, 133-137.	3.9	9
183	Mechanochemical synthesis and electrochemical properties of nanostructured electrode materials for Li ion batteries. Journal of Solid State Electrochemistry, 2009, 13, 239-243.	2.5	9
184	Low Frequency Mechanical Spectroscopy Study of Three Pyrrolidinium Based Ionic Liquids. Archives of Metallurgy and Materials, 2015, 60, 385-390.	0.6	9
185	Critical Filler Concentration in Sulfated Titania-Added Nafionâ,, Membranes for Fuel Cell Applications. Energies, 2016, 9, 272.	3.1	9
186	Novel functionalized ionic liquid with a sulfur atom in the aliphatic side chain of the pyrrolidinium cation. Electrochemistry Communications, 2016, 63, 26-29.	4.7	9
187	Highâ€Temperature Structural Evolution of the Disordered LiMn _{1.5} Ni _{0.5} O ₄ . Journal of the American Ceramic Society, 2016, 99, 1815-1822.	3.8	9
188	Electrochemical characterization of a polymer/polymer, rechargeable solid-state lithium cell. Solid State Ionics, 1988, 28-30, 895-899.	2.7	8
189	In-situ gelled electrolyte for lithium battery: Electrochemical andÂRaman characterization. Journal of Power Sources, 2014, 245, 232-235.	7.8	8
190	Evaluation of the interface aging process of polypyrrole–polysaccharide electrodes in a simulated physiological fluid. Electrochimica Acta, 2012, 68, 1-8.	5. 2	7
191	Thermal stability and reduction of iron oxide nanowires at moderate temperatures. Beilstein Journal of Nanotechnology, 2014, 5, 323-328.	2.8	7
192	Hydrides as High Capacity Anodes in Lithium Cells: An Italian "Futuro in Ricerca di Base FIRB-2010― Project. Challenges, 2017, 8, 8.	1.7	7
193	Gel Polymer Electrolytes Based on Silica-Added Poly(ethylene oxide) Electrospun Membranes for Lithium Batteries. Membranes, 2018, 8, 126.	3.0	6
194	A Novel Li + onducting Polymer Membrane Gelled by Fluorineâ€Free Electrolyte Solutions for Liâ€Ion Batteries. Batteries and Supercaps, 2020, 3, 1112-1119.	4.7	6
195	Electrochemical properties of metal oxides as anode materials for lithium ion batteries. Ionics, 2002, 8, 177-182.	2.4	5
196	Role of the polymer matrix in determining the chemical–physical and electrochemical properties of gel polymer electrolytes for lithium batteries. Ionics, 2007, 13, 111-116.	2.4	5
197	Pitch Carbon-coated Lithium Sulfide Electrode for Advanced, Lithium-metal Free-sulfur Batteries. Green, $2011,1,\ldots$	0.4	5
198	Electrochemical Properties and Applications of Ionically and Electronically Conducting Polymers. Materials Research Society Symposia Proceedings, 1990, 210, 179.	0.1	4

#	Article	IF	Citations
199	Electrochemical characterization of an ambient temperature rechargeable Li battery based on low molecular weight polymer electrolyte. Solid State Ionics, 1994, 70-71, 654-657.	2.7	4
200	Investigation of structural and interfacial characteristics of electrode materials for lithium batteries. Journal of Power Sources, 2001, 94, 225-229.	7.8	4
201	New electrochemical process for the in situ preparation of metal electrodes for lithium-ion batteries. Electrochemistry Communications, 2007, 9, 1239-1241.	4.7	4
202	Dynamics of Mn3+ in off-stoichiometric LiMn1.5Ni0.5O4. Journal of Alloys and Compounds, 2014, 604, 83-86.	5.5	4
203	An advanced ionic liquid-lithium salt electrolyte mixture based on the bis(fluoromethanesulfonyl)imide anion. Electrochemistry Communications, 2014, 43, 5-8.	4.7	4
204	Novel Lithium Ion Batteries Based on a Tin Anode and on Manganese Oxide Cathodes. Israel Journal of Chemistry, 2008, 48, 229-234.	2.3	3
205	Investigation of the Chemical Disorder of LiNi _{0.5} Mn _{1.5} O ₄ Lattice by Means of Extended X-ray Absorption Fine Structure Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 26471-26478.	3.1	3
206	New Composite, Gel-Type Proton Membranes. ECS Transactions, 2006, 1, 169-174.	0.5	2
207	Electrochemical synthesis of nanowires electrodes and their application in energy storage devices. AIP Conference Proceedings, 2019, , .	0.4	2
208	Electrochemical properties of a proton conducting polymer. Ionics, 1997, 3, 214-222.	2.4	1
209	Iron-Substituted Lithium Titanium Spinels: Structural and Electrochemical Characterization ChemInform, 2003, 34, no.	0.0	1
210	Plenary Address- New Types of Rechargeable Lithium and Lithium-lon Polymer Batteries. ECS Transactions, 2006, $1,1$ -7.	0.5	1
211	Fe2O3 nanowires on HOPG as precursor of new carbon-based anode for high-capacity lithium ion batteries. , 2014, , .		1
212	Study of the copper electrodeposition process from low molecular weight polymer electrolyte media. Polymers for Advanced Technologies, 1994, 5, 428-432.	3.2	0
213	Reduction phases of thin iron-oxide nanowires upon thermal treatment and Li exposure. Journal of Applied Physics, 2014, 115, .	2.5	0
214	Electrochemical activity of lightweight borohydrides in lithium cells. , 2015, , .		0