List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7075189/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pinhole-Free and Surface-Nanostructured NiO _{<i>x</i>} Film by Room-Temperature Solution Process for High-Performance Flexible Perovskite Solar Cells with Good Stability and Reproducibility. ACS Nano, 2016, 10, 1503-1511.	7.3	477
2	Delocalization of exciton and electron wavefunction in non-fullerene acceptor molecules enables efficient organic solar cells. Nature Communications, 2020, 11, 3943.	5.8	458
3	Two-photon AIE bio-probe with large Stokes shift for specific imaging of lipid droplets. Chemical Science, 2017, 8, 5440-5446.	3.7	344
4	What makes efficient circularly polarised luminescence in the condensed phase: aggregation-induced circular dichroism and light emission. Chemical Science, 2012, 3, 2737.	3.7	338
5	Solvent Engineering Boosts the Efficiency of Paintable Carbonâ€Based Perovskite Solar Cells to Beyond 14%. Advanced Energy Materials, 2016, 6, 1502087.	10.2	306
6	Effects of a Molecular Monolayer Modification of NiO Nanocrystal Layer Surfaces on Perovskite Crystallization and Interface Contact toward Faster Hole Extraction and Higher Photovoltaic Performance. Advanced Functional Materials, 2016, 26, 2950-2958.	7.8	305
7	A superamplification effect in the detection of explosives by a fluorescent hyperbranched poly(silylenephenylene) with aggregation-enhanced emission characteristics. Polymer Chemistry, 2010, 1, 426-429.	1.9	288
8	Bright Near-Infrared Aggregation-Induced Emission Luminogens with Strong Two-Photon Absorption, Excellent Organelle Specificity, and Efficient Photodynamic Therapy Potential. ACS Nano, 2018, 12, 8145-8159.	7.3	281
9	Circularlyâ€Polarized Luminescence (CPL) from Chiral AIE Molecules and Macrostructures. Small, 2016, 12, 6495-6512.	5.2	241
10	Effect of Native Defects on Photocatalytic Properties of ZnO. Journal of Physical Chemistry C, 2011, 115, 11095-11101.	1.5	238
11	A Smooth CH ₃ NH ₃ PbI ₃ Film via a New Approach for Forming the PbI ₂ Nanostructure Together with Strategically High CH ₃ NH ₃ I Concentration for High Efficient Planarâ€Heterojunction Solar Cells. Advanced Energy Materials, 2015, 5, 1501354.	10.2	228
12	16% efficiency all-polymer organic solar cells enabled by a finely tuned morphology via the design of ternary blend. Joule, 2021, 5, 914-930.	11.7	228
13	Why Do Simple Molecules with "Isolated―Phenyl Rings Emit Visible Light?. Journal of the American Chemical Society, 2017, 139, 16264-16272.	6.6	201
14	Efficient Light Emitters in the Solid State: Synthesis, Aggregationâ€Induced Emission, Electroluminescence, and Sensory Properties of Luminogens with Benzene Cores and Multiple Triarylvinyl Peripherals. Advanced Functional Materials, 2012, 22, 378-389.	7.8	198
15	A tetraphenylethene-substituted pyridinium salt with multiple functionalities: synthesis, stimuli-responsive emission, optical waveguide and specific mitochondrion imaging. Journal of Materials Chemistry C, 2013, 1, 4640.	2.7	193
16	Boron Doping of Multiwalled Carbon Nanotubes Significantly Enhances Hole Extraction in Carbon-Based Perovskite Solar Cells. Nano Letters, 2017, 17, 2496-2505.	4.5	184
17	An AIE-active hemicyanine fluorogen with stimuli-responsive red/blue emission: extending the pH sensing range by "switch + knob―effect. Chemical Science, 2012, 3, 1804.	3.7	171
18	Highâ€Performance Blue Perovskite Lightâ€Emitting Diodes Enabled by Efficient Energy Transfer between Coupled Quasiâ€2D Perovskite Layers. Advanced Materials, 2021, 33, e2005570.	11.1	171

#	Article	IF	CITATIONS
19	Two Are Better Than One: A Design Principle for Ultralongâ€Persistent Luminescence of Pure Organics. Advanced Materials, 2020, 32, e2001026.	11.1	164
20	Fine-tuning of side-chain orientations on nonfullerene acceptors enables organic solar cells with 17.7% efficiency. Energy and Environmental Science, 2021, 14, 3469-3479.	15.6	158
21	Functionalized Acrylonitriles with Aggregation-Induced Emission: Structure Tuning by Simple Reaction-Condition Variation, Efficient Red Emission, and Two-Photon Bioimaging. Journal of the American Chemical Society, 2019, 141, 15111-15120.	6.6	155
22	Specific Two-Photon Imaging of Live Cellular and Deep-Tissue Lipid Droplets by Lipophilic AlEgens at Ultralow Concentration. Chemistry of Materials, 2018, 30, 4778-4787.	3.2	154
23	Non-conventional fluorescent biogenic and synthetic polymers without aromatic rings. Polymer Chemistry, 2017, 8, 1722-1727.	1.9	152
24	A pure and stable intermediate phase is key to growing aligned and vertically monolithic perovskite crystals for efficient PIN planar perovskite solar cells with high processibility and stability. Nano Energy, 2017, 34, 58-68.	8.2	151
25	ACQâ€ŧoâ€AlE Transformation: Tuning Molecular Packing by Regioisomerization for Twoâ€Photon NIR Bioimaging. Angewandte Chemie - International Edition, 2020, 59, 12822-12826.	7.2	131
26	Highly efficient singlet oxygen generation, two-photon photodynamic therapy and melanoma ablation by rationally designed mitochondria-specific near-infrared AIEgens. Chemical Science, 2020, 11, 2494-2503.	3.7	131
27	Room Temperature Synthesis of Stable, Printable Cs ₃ Cu ₂ X ₅ (X = I,) Tj ET Chemistry of Materials, 2020, 32, 5515-5524.	Qq1 1 0.7 3.2	84314 rgB ⁻ 127
28	<scp>l</scp> -Valine methyl ester-containing tetraphenylethene: aggregation-induced emission, aggregation-induced circular dichroism, circularly polarized luminescence, and helical self-assembly. Materials Horizons, 2014, 1, 518-521.	6.4	122
29	Hyperbranched conjugated poly(tetraphenylethene): synthesis, aggregation-induced emission, fluorescent photopatterning, optical limiting and explosive detection. Polymer Chemistry, 2012, 3, 1481.	1.9	117
30	Aggregation-induced chirality, circularly polarized luminescence, and helical self-assembly of a leucine-containing AIE luminogen. Journal of Materials Chemistry C, 2015, 3, 2399-2404.	2.7	114
31	Selective Hole and Electron Transport in Efficient Quaternary Blend Organic Solar Cells. Joule, 2020, 4, 1790-1805.	11.7	110
32	Lightâ€Emitting Liquid Crystal Displays Based on an Aggregationâ€Induced Emission Luminogen. Advanced Optical Materials, 2015, 3, 199-202.	3.6	105
33	Novel Direct Nanopatterning Approach to Fabricate Periodically Nanostructured Perovskite for Optoelectronic Applications. Advanced Functional Materials, 2017, 27, 1606525.	7.8	101
34	Multifunctional AlEgens: Ready Synthesis, Tunable Emission, Mechanochromism, Mitochondrial, and Bacterial Imaging. Advanced Functional Materials, 2018, 28, 1704589.	7.8	96
35	An Ultrathin Ferroelectric Perovskite Oxide Layer for Highâ€Performance Hole Transport Material Free Carbon Based Halide Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1806506. 	7.8	93
36	All-Perovskite Emission Architecture for White Light-Emitting Diodes. ACS Nano, 2018, 12, 10486-10492.	7.3	92

#	Article	IF	CITATIONS
37	Mitochondrionâ€Specific Liveâ€Cell Bioprobe Operated in a Fluorescence Turnâ€On Manner and a Wellâ€Designed Photoactivatable Mechanism. Advanced Materials, 2015, 27, 7093-7100.	11.1	89
38	Designing nanobowl arrays of mesoporous TiO ₂ as an alternative electron transporting layer for carbon cathode-based perovskite solar cells. Nanoscale, 2016, 8, 6393-6402.	2.8	89
39	Red AlEâ€Active Fluorescent Probes with Tunable Organelleâ€Specific Targeting. Advanced Functional Materials, 2020, 30, 1909268.	7.8	85
40	Highly photostable two-photon NIR AIEgens with tunable organelle specificity and deep tissue penetration. Biomaterials, 2019, 208, 72-82.	5.7	82
41	Sideâ€Chain Engineering on Yâ€5eries Acceptors with Chlorinated End Groups Enables Highâ€Performance Organic Solar Cells. Advanced Energy Materials, 2021, 11, 2003777.	10.2	82
42	An amorphous precursor route to the conformable oriented crystallization of CH ₃ NH ₃ PbBr ₃ in mesoporous scaffolds: toward efficient and thermally stable carbon-based perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 12897-12912.	5.2	77
43	Inverted planar perovskite solar cells based on CsI-doped PEDOT:PSS with efficiency beyond 20% and small energy loss. Journal of Materials Chemistry A, 2019, 7, 21662-21667.	5.2	77
44	Largeâ€Grain Formamidinium Pbl _{3–} <i>_x</i> Br <i>_x</i> for Highâ€Performance Perovskite Solar Cells via Intermediate Halide Exchange. Advanced Energy Materials, 2017, 7, 1601882.	10.2	76
45	Textured CH3NH3PbI3 thin film with enhanced stability for high performance perovskite solar cells. Nano Energy, 2017, 33, 485-496.	8.2	74
46	Crystallinity Preservation and Ion Migration Suppression through Dual Ion Exchange Strategy for Stable Mixed Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700118.	10.2	74
47	Long-lived and disorder-free charge transfer states enable endothermic charge separation in efficient non-fullerene organic solar cells. Nature Communications, 2020, 11, 5617.	5.8	73
48	Lowâ€Bandgap Methylammoniumâ€Rubidium Cation Snâ€Rich Perovskites for Efficient Ultraviolet–Visible–Near Infrared Photodetectors. Advanced Functional Materials, 2018, 28, 1706068.	7.8	70
49	Complexation-induced circular dichroism and circularly polarised luminescence of an aggregation-induced emission luminogen. Journal of Materials Chemistry C, 2014, 2, 78-83.	2.7	69
50	Functionalized AIE nanoparticles with efficient deep-red emission, mitochondrial specificity, cancer cell selectivity and multiphoton susceptibility. Chemical Science, 2017, 8, 4634-4643.	3.7	69
51	Evolution of Diffusion Length and Trap State Induced by Chloride in Perovskite Solar Cell. Journal of Physical Chemistry C, 2016, 120, 21248-21253.	1.5	64
52	Drawing a clear mechanistic picture for the aggregation-induced emission process. Materials Chemistry Frontiers, 2019, 3, 1143-1150.	3.2	64
53	Synthesis, optical properties and helical self-assembly of a bivaline-containing tetraphenylethene. Scientific Reports, 2016, 6, 19277.	1.6	63
54	Perovskite Bifunctional Device with Improved Electroluminescent and Photovoltaic Performance through Interfacial Energyâ€Band Engineering. Advanced Materials, 2019, 31, e1902543.	11.1	62

#	Article	IF	CITATIONS
55	Solvent Effect and Two-Photon Optical Properties of Triphenylamine-Based Donor–Acceptor Fluorophores. Journal of Physical Chemistry C, 2015, 119, 27630-27638.	1.5	61
56	Insight into the strong aggregation-induced emission of low-conjugated racemic C6-unsubstituted tetrahydropyrimidines through crystal-structure–property relationship of polymorphs. Chemical Science, 2015, 6, 4690-4697.	3.7	59
57	Endoplasmic Reticulum-Localized Two-Photon-Absorbing Boron Dipyrromethenes as Advanced Photosensitizers for Photodynamic Therapy. Journal of Medicinal Chemistry, 2018, 61, 3952-3961.	2.9	58
58	Bufferless 1.5  µm III-V lasers grown on Si-photonics 220  nm silicon-on-insulator platforms. (7, 148.	Optica, 20 4.8	20 ₅₃
59	Click Synthesis, Aggregationâ€Induced Emission and Chirality, Circularly Polarized Luminescence, and Helical Selfâ€Assembly of a Leucineâ€Containing Silole. Small, 2016, 12, 6593-6601.	5.2	50
60	A 16.4% efficiency organic photovoltaic cell enabled using two donor polymers with their side-chains oriented differently by a ternary strategy. Journal of Materials Chemistry A, 2020, 8, 3676-3685.	5.2	48
61	A monolithic InP/SOI platform for integrated photonics. Light: Science and Applications, 2021, 10, 200.	7.7	47
62	Telecom InP/InGaAs nanolaser array directly grown on (001) silicon-on-insulator. Optics Letters, 2019, 44, 767.	1.7	45
63	Alkoxy substitution on IDT-Series and Y-Series non-fullerene acceptors yielding highly efficient organic solar cells. Journal of Materials Chemistry A, 2021, 9, 7481-7490.	5.2	42
64	Mixed Spacer Cation Stabilization of Blueâ€Emitting <i>n</i> = 2 Ruddlesden–Popper Organic–Inorganic Halide Perovskite Films. Advanced Optical Materials, 2020, 8, 1901679.	3.6	41
65	Room-temperature InP/InGaAs nano-ridge lasers grown on Si and emitting at telecom bands. Optica, 2018, 5, 918.	4.8	40
66	Understanding the Charge Transfer State and Energy Loss Trade-offs in Non-fullerene-Based Organic Solar Cells. ACS Energy Letters, 2021, 6, 3408-3416.	8.8	40
67	Tuning the A-site cation composition of FA perovskites for efficient and stable NiO-based p–i–n perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 21858-21865.	5.2	39
68	Selfâ€Assembled Quasiâ€3D Nanocomposite: A Novel pâ€Type Hole Transport Layer for High Performance Inverted Organic Solar Cells. Advanced Functional Materials, 2018, 28, 1706403.	7.8	39
69	Interlayer Crossâ€Linked 2D Perovskite Solar Cell with Uniform Phase Distribution and Increased Exciton Coupling. Solar Rrl, 2020, 4, 1900578.	3.1	39
70	Alkyl Chain Regiochemistry of Benzotriazoleâ€Based Donor Polymers Influencing Morphology and Performances of Nonâ€Fullerene Organic Solar Cells. Advanced Energy Materials, 2018, 8, 1702427.	10.2	36
71	Extraordinary Surface Plasmon Coupled Emission Using Core/Shell Gold Nanorods. Journal of Physical Chemistry C, 2012, 116, 9259-9264.	1.5	34
72	A low temperature gradual annealing scheme for achieving high performance perovskite solar cells with no hysteresis. Journal of Materials Chemistry A, 2015, 3, 14424-14430.	5.2	34

#	Article	IF	CITATIONS
73	Development of benzylidene-methyloxazolone based AIEgens and decipherment of their working mechanism. Journal of Materials Chemistry C, 2017, 5, 7191-7199.	2.7	33
74	Surface Sulfuration of NiO Boosts the Performance of Inverted Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000270.	3.1	31
75	Aggregation-Induced Emission Luminogens as Color Converters for Visible-Light Communication. ACS Applied Materials & Interfaces, 2018, 10, 34418-34426.	4.0	28
76	Uncovering the Electronâ€Phonon Interplay and Dynamical Energyâ€Dissipation Mechanisms of Hot Carriers in Hybrid Lead Halide Perovskites. Advanced Energy Materials, 2021, 11, 2003071.	10.2	28
77	Quantifying enhanced photoluminescence in mixed-lanthanide carboxylate polymers: sensitization versus reduction of self-quenching. Journal of Materials Chemistry, 2011, 21, 8547.	6.7	27
78	Effect of Plasma Treatment on Native Defects and Photocatalytic Activities of Zinc Oxide Tetrapods. Journal of Physical Chemistry C, 2014, 118, 22760-22767.	1.5	27
79	Recent Advances in the Hardware of Visible Light Communication. IEEE Access, 2019, 7, 91093-91104.	2.6	27
80	Optical Trapping, Sizing, and Probing Acoustic Modes of a Small Virus. Applied Sciences (Switzerland), 2020, 10, 394.	1.3	27
81	ACQâ€ŧoâ€AIE Transformation: Tuning Molecular Packing by Regioisomerization for Twoâ€₽hoton NIR Bioimaging. Angewandte Chemie, 2020, 132, 12922-12926.	1.6	25
82	Aggregation Enhancement on Two-Photon Optical Properties of AIE-Active D-TPE-A Molecules. Journal of Physical Chemistry C, 2014, 118, 26981-26986.	1.5	24
83	All-room-temperature solution-processed new nanocomposites based hole transport layer from synthesis to film formation for high-performance organic solar cells towards ultimate energy-efficient fabrication. Nano Energy, 2018, 47, 26-34.	8.2	23
84	Diagnosis of fatty liver disease by a multiphoton-active and lipid-droplet-specific AlEgen with nonaromatic rotors. Materials Chemistry Frontiers, 2021, 5, 1853-1862.	3.2	22
85	Enhanced Electrochemical Stability by Alkyldiammonium in Dion–Jacobson Perovskite toward Ultrastable Lightâ€Emitting Diodes. Advanced Optical Materials, 2021, 9, 2100243.	3.6	21
86	Rapid Synthesis of Bright, Shapeâ€Controlled, Large Single Crystals of Cs ₃ Cu ₂ X ₅ for Phase Pure Single (XÂ = ÂBr, Cl) and Mixed Halides (XÂ = ÂBr/Cl) as the Blue and Green Components for Printable White Lightâ€Emitting Devices, Advanced Materials Interfaces, 2021, 8, 2101471.	1.9	21
87	Circularly polarized luminescence and controllable helical self-assembly of an aggregation-induced emission luminogen. Dyes and Pigments, 2017, 138, 129-134.	2.0	20
88	Efficient color routing with a dispersion-controlled waveguide array. Light: Science and Applications, 2013, 2, e52-e52.	7.7	19
89	1â€Chloronaphthaleneâ€Induced Donor/Acceptor Vertical Distribution and Carrier Dynamics Changes in Nonfullerene Organic Solar Cells and the Governed Mechanism. Small Methods, 2022, 6, e2101475.	4.6	19
90	Aggregation-Induced Emission Luminogen-Based Direct Visualization of Concentration Gradient Inside an Evaporating Binary Sessile Droplet. ACS Applied Materials & amp; Interfaces, 2017, 9, 29157-29166.	4.0	18

#	Article	IF	CITATIONS
91	Pyrrolopyrrole aza boron dipyrromethene based two-photon fluorescent probes for subcellular imaging. Journal of Materials Chemistry B, 2018, 6, 5570-5581.	2.9	18
92	Surface-plasmon-enhanced photoluminescence from metal-capped Alq3 thin Films. Applied Physics Letters, 2009, 95, 051503.	1.5	17
93	A Luminescent Nitrogenâ€Containing Polycyclic Aromatic Hydrocarbon Synthesized by Photocyclodehydrogenation with Unprecedented Regioselectivity. Chemistry - A European Journal, 2015, 21, 17973-17980.	1.7	17
94	Smooth CH ₃ NH ₃ PbI ₃ from controlled solid–gas reaction for photovoltaic applications. RSC Advances, 2015, 5, 73760-73766.	1.7	17
95	Tuning the Self-Trapped Emission: Reversible Transformation to 0D Copper Clusters Permits Bright Red Emission in Potassium and Rubidium Copper Bromides. ACS Energy Letters, 2021, 6, 4383-4389.	8.8	16
96	Room temperature III–V nanolasers with distributed Bragg reflectors epitaxially grown on (001) silicon-on-insulators. Photonics Research, 2019, 7, 1081.	3.4	14
97	Synthesis, light emission, and photovoltaic properties of peryleneâ€containing polyacetylenes. Journal of Polymer Science Part A, 2008, 46, 2025-2037.	2.5	13
98	Enhancement of spontaneous emission rate and reduction in amplified spontaneous emission threshold in electrodeposited three-dimensional ZnO photonic crystal. Applied Physics Letters, 2010, 97, .	1.5	13
99	Bulk Heterojunction Quasi-Two-Dimensional Perovskite Solar Cell with 1.18 V High Photovoltage. ACS Applied Materials & Interfaces, 2019, 11, 2935-2943.	4.0	13
100	Quantification of Temperatureâ€Dependent Charge Separation and Recombination Dynamics in Nonâ€Fullerene Organic Photovoltaics. Advanced Functional Materials, 2021, 31, 2107157.	7.8	13
101	Potassium and Rubidium Copper Halide A ₂ CuX ₃ (A = K, Rb, X = Cl, Br) Micro- and Nanocrystals with Near Unity Quantum Yields for White Light Applications. ACS Applied Nano Materials, 2021, 4, 14188-14196.	2.4	13
102	Two-photon fabrication of photonic crystals by single-beam laser holographic lithography. Journal of Applied Physics, 2010, 107, 074311.	1.1	12
103	Solution-Processed, Inverted AgBiS ₂ Nanocrystal Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 1634-1642.	4.0	12
104	Nanostructures: A Smooth CH ₃ NH ₃ Pbl ₃ Film via a New Approach for Forming the Pbl ₂ Nanostructure Together with Strategically High CH ₃ NH ₃ I Concentration for High Efficient Planarâ€Heterojunction Solar Cells (Adv. Energy Mater. 23/2015). Advanced Energy Materials, 2015, 5, .	10.2	10
105	Phase control for quasi-2D blue emitters by spacer cation engineering. Journal of Materials Chemistry C, 2020, 8, 11052-11060.	2.7	10
106	Unraveling the Temperature Dependence of Exciton Dissociation and Free Charge Generation in Nonfullerene Organic Solar Cells. Solar Rrl, 2021, 5, 2000789.	3.1	10
107	Compositional optimization of mixed cation Dion–Jacobson perovskites for efficient green light emission. Journal of Materials Chemistry C, 2021, 10, 108-114.	2.7	10
108	Telecom InGaAs/InP Quantum Well Lasers Laterally Grown on Silicon-on-Insulator. Journal of Lightwave Technology, 2022, 40, 5631-5635.	2.7	10

#	Article	IF	CITATIONS
109	New Insights into Hot-Charge Relaxation in Lead Halide Perovskite: Dynamical Bandgap Change, Hot-Biexciton Effect, and Photo-Bleaching Shift. ACS Photonics, 2022, 9, 2304-2314.	3.2	10
110	Multipolar Effects in the Optical Active Second Harmonic Generation from Sawtooth Chiral Metamaterials. Scientific Reports, 2016, 6, 22061.	1.6	9
111	Perovskite Bifunctional Diode with High Photovoltaic and Electroluminescent Performance by Holistic Defect Passivation. Small, 2022, 18, e2105196.	5.2	9
112	Coherent Beam Combining with Second-Harmonic Generation Optimized with Adaptive Phase Control. IEEE Journal of Quantum Electronics, 2011, 47, 348-353.	1.0	8
113	Evaporationâ€Free Organic Solar Cells with High Efficiency Enabled by Dry and Nonimmersive Sintering Strategy. Advanced Functional Materials, 2021, 31, 2010764.	7.8	8
114	Factors That Prevent Spin-Triplet Recombination in Non-fullerene Organic Photovoltaics. Journal of Physical Chemistry Letters, 2021, 12, 5045-5051.	2.1	7
115	Reciprocally Photovoltaic Lightâ€Emitting Diode Based on Dispersive Perovskite Nanocrystal. Small, 2022, 18, e2107145.	5.2	7
116	Enhanced Light Emission Performance of Mixed Cation Perovskite Films—The Effect of Solution Stoichiometry on Crystallization. Advanced Optical Materials, 2021, 9, 2100393.	3.6	6
117	Improvement in the Performance of Inverted 3D/2D Perovskite Solar Cells by Ambient Exposure. Solar Rrl, 2022, 6, .	3.1	6
118	III–V micro- and nano-lasers deposited on amorphous SiO2. Applied Physics Letters, 2020, 116, .	1.5	5
119	Perovskite Lightâ€Emitting Diodes: Highâ€Performance Blue Perovskite Lightâ€Emitting Diodes Enabled by Efficient Energy Transfer between Coupled Quasiâ€⊋D Perovskite Layers (Adv. Mater. 1/2021). Advanced Materials, 2021, 33, 2170006.	11.1	5
120	Optically Probing Field-Dependent Charge Dynamics in Non-Fullerene Organic Photovoltaics with Small Interfacial Energy Offsets. Journal of Physical Chemistry C, 2021, 125, 1714-1722.	1.5	5
121	Intentional Oxidation and Laser Remelting of Highly Reflective Pure Cu for Its Highâ€Quality Additive Manufacturing. Advanced Engineering Materials, 2023, 25, 2101138.	1.6	5
122	Surface and bulk exciton recombination dynamics in GaN freestanding films via one- and two-photon excitations. Journal of Materials Science: Materials in Electronics, 2007, 18, 453-457.	1.1	4
123	Selective Laser Melting of Cu–10Sn–0.4P: Processing, Microstructure, Properties, and Brief Comparison with Additively Manufactured Cu–10Sn. Advanced Engineering Materials, 0, , 2100716.	1.6	4
124	Highly Stable Tetrahydrothiophene 1-Oxide Caged Copper Bromide and Chloride Clusters with Deep-Red to Near-IR Emission. Inorganic Chemistry, 2022, 61, 10950-10956.	1.9	4
125	Spontaneous Formation of Nanocrystals in Amorphous Matrix: Alternative Pathway to Bright Emission in Quasiâ€2D Perovskites. Advanced Optical Materials, 2019, 7, 1900269.	3.6	3
126	Perovskite Solar Cells: Largeâ€Grain Formamidinium PbI _{3–} <i>_x</i> Br <i>_x</i> for Highâ€Performance Perovskite Solar Cells via Intermediate Halide Exchange (Adv. Energy Mater. 12/2017). Advanced Energy Materials, 2017, 7, .	10.2	2

#	Article	IF	CITATIONS
127	Unraveling the photophysical and semiconducting properties of color converter luminogens with aggregation induced emission characteristics. Journal of Materials Chemistry C, 2020, 8, 16757-16768.	2.7	2
128	Upside-Down Molding Approach for Geometrical Parameter-Tunable Photonic Perovskite Nanostructures. ACS Applied Materials & Interfaces, 2021, 13, 27313-27322.	4.0	2
129	Effects of Vertical Molecular Stratifications and Microstructures on the Properties of Fullereneâ€Free Organic Solar Cells. Advanced Photonics Research, 0, , 2100339.	1.7	2
130	Degenerate Two-Beam Phase Conjugation in One-Dimensional ZnS–YF\$_{3}\$ Photonic Crystal With Central Defect Mode. IEEE Photonics Technology Letters, 2010, 22, 781-783.	1.3	1
131	Mechanochromism: Multifunctional AlEgens: Ready Synthesis, Tunable Emission, Mechanochromism, Mitochondrial, and Bacterial Imaging (Adv. Funct. Mater. 1/2018). Advanced Functional Materials, 2018, 28, 1870006.	7.8	1
132	Enhanced absorption of CVD grown molybdenum disulfide monolayers via surface plasmon resonance with silver nano-triangles. OSA Continuum, 2019, 2, 1401.	1.8	1
133	Second Harmonic Generation from UV to Visible in KDP Single-crystalline Fibers. , 2018, , .		1
134	Fabrication of three-dimensional polymer photonic crystal by a single beam laser holographic lithography. , 2005, , .		0
135	Fabrication of photonic crystal by two-photon single-beam laser holographic lithography. , 2007, , .		Ο
136	Fabrication of photonic crystal by two-photon single-beam laser holographic lithography. , 2007, , .		0
137	Second-Harmonic Generation from Aligned and Mono-sized Single-Walled Carbon Nanotubes. , 2007, , .		0
138	Holographic Nano-Patterning Based On Photo-Cross-Linkable Light Emitting Polyacetylenes. AIP Conference Proceedings, 2007, , .	0.3	0
139	Degenerate two-beam phase conjugation in ZnS/YF <inf>3</inf> photonic crystal with a central defect mode. , 2009, , .		Ο
140	White light emission from InGaN/organic molecule light-emitting diode. , 2013, , .		0
141	Nanofibers: Click Synthesis, Aggregation-Induced Emission and Chirality, Circularly Polarized Luminescence, and Helical Self-Assembly of a Leucine-Containing Silole (Small 47/2016). Small, 2016, 12, 6420-6420.	5.2	Ο
142	Ruddlesden–Popper Perovskites: Spontaneous Formation of Nanocrystals in Amorphous Matrix: Alternative Pathway to Bright Emission in Quasiâ€⊉D Perovskites (Advanced Optical Materials 19/2019). Advanced Optical Materials, 2019, 7, 1970074.	3.6	0
143	Mechanism of Wavelength Tuning over 200 nm Range from InP/InGaAs Nano-Lasers Grown on SOI. , 2019, , .		0
144	Telecom III-V Nano-Lasers with Distributed Bragg Reflectors Grown on (001) Silicon-on-Insulators. , 2019, , .		0

#	Article	IF	CITATIONS
145	Lead Halide Perovskites: Uncovering the Electronâ€Phonon Interplay and Dynamical Energyâ€Dissipation Mechanisms of Hot Carriers in Hybrid Lead Halide Perovskites (Adv. Energy Mater. 9/2021). Advanced Energy Materials, 2021, 11, 2170036.	10.2	0
146	Room temperature lasing from InP/InGaAs nano-ridges at telecom-bands. , 2018, , .		0
147	Molecular Dynamics Simulations of Shockwave Affected STMV Virus to Measure the Frequencies of the Oscillatory Response. Acoustics, 2022, 4, 268-275.	0.8	0
148	Slow hole transfer kinetics lead to high blend photoluminescence of unfused Aâ€Dâ€A′â€Dâ€A type acceptors with unfavorable HOMO offset. Solar Rrl, 0, , .	3.1	0