
Miguel Ängel LÄ³pez Marcos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7075109/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Finite Difference Scheme for the K(2, 2) Compacton Equation. Journal of Computational Physics, 1995, 120, 248-252.	3.8	37
2	Conservative numerical methods for solitary wave interactions. Journal of Physics A, 2003, 36, 7761-7770.	1.6	32
3	A numerical method for nonlinear age-structured population models with finite maximum age. Journal of Mathematical Analysis and Applications, 2010, 361, 150-160.	1.0	31
4	Numerical behaviour of stable and unstable solitary waves. Applied Numerical Mathematics, 2002, 42, 95-116.	2.1	27
5	A Numerical Study of the Stability of Solitary Waves ofÂtheÂBona–Smith Family of Boussinesq Systems. Journal of Nonlinear Science, 2007, 17, 569-607.	2.1	27
6	Numerical schemes for a size-structured cell population model with equal fission. Mathematical and Computer Modelling, 2009, 50, 653-664.	2.0	22
7	Numerical analysis of pseudospectral methods for the Kuramoto-Sivashinsky equation. IMA Journal of Numerical Analysis, 1994, 14, 233-242.	2.9	13
8	Numerical approximation of singular asymptotic states for a size-structured population model with a dynamical resource. Mathematical and Computer Modelling, 2011, 54, 1693-1698.	2.0	13
9	Are Gauss-Legendre methods useful in molecular dynamics?. Journal of Computational and Applied Mathematics, 1996, 67, 173-179.	2.0	11
10	Numerical analysis of an open marine population model with spaced-limited recruitment. Mathematical and Computer Modelling, 2010, 52, 1037-1044.	2.0	11
11	A numerical simulation for the dynamics of the sexual phase of monogonont rotifera. Comptes Rendus - Biologies, 2004, 327, 293-303.	0.2	10
12	A numerical integrator for a model with a discontinuous sink term: the dynamics of the sexual phase of monogonont rotifera. Nonlinear Analysis: Real World Applications, 2005, 6, 935-954.	1.7	10
13	Numerical study on the proliferation cells fraction of a tumour cord model. Mathematical and Computer Modelling, 2010, 52, 992-998.	2.0	9
14	Numerical analysis of a population model of marine invertebrates with different life stages. Communications in Nonlinear Science and Numerical Simulation, 2013, 18, 2153-2163.	3.3	9
15	A semi-Lagrangian method for a cell population model in a dynamical environment. Mathematical and Computer Modelling, 2013, 57, 1860-1866.	2.0	9
16	Numerical investigation of the recruitment process in open marine population models. Journal of Statistical Mechanics: Theory and Experiment, 2011, 2011, P01003.	2.3	8
17	Long-Time Simulation of a Size-Structured Population Model with a Dynamical Resource. Mathematical Modelling of Natural Phenomena, 2010, 5, 1-21.	2.4	7
18	Numerical integration of a hierarchically size-structured population model with contest competition. Journal of Computational and Applied Mathematics, 2014, 258, 116-134.	2.0	7

#	Article	IF	CITATIONS
19	Analysis of an efficient integrator for a size-structured population model with a dynamical resource. Computers and Mathematics With Applications, 2014, 68, 941-961.	2.7	7
20	Approximating the survival probability in finite life-span population models. Journal of Computational and Applied Mathematics, 2018, 330, 783-793.	2.0	6
21	Study on the efficiency in the numerical integration of size-structured population models: Error and computational cost. Journal of Computational and Applied Mathematics, 2016, 291, 391-401.	2.0	5
22	A Second-Order Method for the Numerical Integration of a Size-Structured Cell Population Model. Abstract and Applied Analysis, 2015, 2015, 1-8.	0.7	4
23	A note on the computation of bifurcation diagrams of the Kuramoto-Sivashinsky equation by pseudospectral methods. Applied Numerical Mathematics, 1993, 13, 147-154.	2.1	3
24	Asymptotic behaviour of a mathematical model of hematopoietic stem cell dynamics. International Journal of Computer Mathematics, 2014, 91, 198-208.	1.8	3
25	A second-order numerical method for a cell population model with asymmetric division. Journal of Computational and Applied Mathematics, 2017, 309, 522-531.	2.0	3
26	Numerical approximation of finite lifeâ€span ageâ€structured population models. Mathematical Methods in the Applied Sciences, 2022, 45, 3272-3283.	2.3	3
27	The effects of time valuation in cancer optimal therapies: a study of chronic myeloid leukemia. Theoretical Biology and Medical Modelling, 2019, 16, 10.	2.1	2
28	A numerical study on the estimation of the stable size distribution for a cell population balance model. Mathematical Methods in the Applied Sciences, 2018, 41, 2894-2905.	2.3	1
29	Numerical analysis of a cell dwarfism model. Journal of Computational and Applied Mathematics, 2019, 349, 82-92.	2.0	1
30	Numerical Analysis of a Size-Structured Population Model with a Dynamical Resource. Biomath, 2014, 3, .	0.7	1
31	Computational Study on the Dynamics of a Consumer-Resource Model: The Influence of the Growth Law in the Resource. Mathematics, 2021, 9, 2746.	2.2	1
32	The Convergence Analysis of a Numerical Method for a Structured Consumer-Resource Model with Delay in the Resource Evolution Rate. Mathematics, 2020, 8, 1440.	2.2	0