

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7075107/publications.pdf Version: 2024-02-01

	34016	35952
10,517	52	97
citations	h-index	g-index
121	121	9836
docs citations	times ranked	citing authors
	citations 121	10,517 52 citations h-index 121 121

Ηλο Υμ

#	Article	IF	CITATIONS
1	Kilobase-scale genomic deletion of DOTFL1 in Dendrobium orchids. Journal of Genetics and Genomics, 2022, 49, 81-84.	1.7	8
2	RNA N6-methyladenosine modification promotes auxin biosynthesis required for male meiosis in rice. Developmental Cell, 2022, 57, 246-259.e4.	3.1	20
3	FIONA1â€Mediated m ⁶ A Modification Regulates the Floral Transition in <i>Arabidopsis</i> . Advanced Science, 2022, 9, e2103628.	5.6	34
4	Molecular genetic insights into orchid reproductive development. Journal of Experimental Botany, 2022, 73, 1841-1852.	2.4	10
5	New insights into centromeres from Arabidopsis Col-CEN assembly. Trends in Genetics, 2022, 38, 416-418.	2.9	2
6	Splicing-mediated activation of SHAGGY-like kinases underpinning carbon partitioning in Arabidopsis seeds. Plant Cell, 2022, 34, 2730-2746.	3.1	6
7	Phase separation of HRLP regulates flowering time in <i>Arabidopsis</i> . Science Advances, 2022, 8, .	4.7	17
8	The tetratricopeptide repeat protein OsTPR075 promotes heading by regulating florigen transport in rice. Plant Cell, 2022, 34, 3632-3646.	3.1	12
9	The OsFTIP6-OsHB22-OsMYBR57 module regulates drought response in rice. Molecular Plant, 2022, 15, 1227-1242.	3.9	19
10	Regulation by FLOWERING LOCUS T and TERMINAL FLOWER 1 in Flowering Time and Plant Architecture. Small Structures, 2021, 2, 2000125.	6.9	20
11	TCP transcription factors suppress cotyledon trichomes by impeding a cell differentiation-regulating complex. Plant Physiology, 2021, 186, 434-451.	2.3	20
12	A novel <i>Arabidopsis</i> gene <i>RGAT1</i> is required for GAâ€mediated tapetum and pollen development. New Phytologist, 2021, 231, 137-151.	3.5	19
13	<i>DOTFL1</i> affects the floral transition in orchid <i>Dendrobium</i> Chao Praya Smile. Plant Physiology, 2021, 186, 2021-2036.	2.3	15
14	Nuclear translocation of OsMFT1 that is impeded by OsFTIP1 promotes drought tolerance in rice. Molecular Plant, 2021, 14, 1297-1311.	3.9	27
15	GSK3s: nodes of multilayer regulation of plant development and stress responses. Trends in Plant Science, 2021, 26, 1286-1300.	4.3	33
16	Epitranscriptome engineering in crop improvement. Molecular Plant, 2021, 14, 1418-1420.	3.9	10
17	Florigen sequestration in cellular membranes modulates temperature-responsive flowering. Science, 2021, 373, 1137-1142.	6.0	56
18	N6-methyladenosine modification underlies messenger RNA metabolism and plant development. Current Opinion in Plant Biology, 2021, 63, 102047.	3.5	44

#	Article	IF	CITATIONS
19	Further evidence for the association between LRP8 and schizophrenia. Schizophrenia Research, 2020, 215, 499-505.	1.1	10
20	<i>Mesostigma viride</i> Genome and Transcriptome Provide Insights into the Origin and Evolution of Streptophyta. Advanced Science, 2020, 7, 1901850.	5.6	40
21	New insights into gibberellin signaling in regulating flowering in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2020, 62, 118-131.	4.1	175
22	Zinc finger protein 5 (ZFP5) associates with ethylene signaling to regulate the phosphate and potassium deficiency-induced root hair development in Arabidopsis. Plant Molecular Biology, 2020, 102, 143-158.	2.0	39
23	Seeing the lights for leafy greens in indoor vertical farming. Trends in Food Science and Technology, 2020, 106, 48-63.	7.8	75
24	Florigen trafficking integrates photoperiod and temperature signals in Arabidopsis. Journal of Integrative Plant Biology, 2020, 62, 1385-1398.	4.1	30
25	Mobile TERMINAL FLOWER1 determines seed size in Arabidopsis. Nature Plants, 2020, 6, 1146-1157.	4.7	58
26	Characterization of C- and D-Class MADS-Box Genes in Orchids. Plant Physiology, 2020, 184, 1469-1481.	2.3	7
27	SHAGGY-like kinase 12 regulates flowering through mediating CONSTANS stability in <i>Arabidopsis</i> . Science Advances, 2020, 6, eaaw0413.	4.7	34
28	The N-Terminal Acetyltransferase Naa50 Regulates Arabidopsis Growth and Osmotic Stress Response. Plant and Cell Physiology, 2020, 61, 1565-1575.	1.5	16
29	Nucleoporin 160 Regulates Flowering through Anchoring HOS1 for Destabilizing CO in Arabidopsis. Plant Communications, 2020, 1, 100033.	3.6	24
30	TOP1α, UPF1, and TTG2 regulate seed size in a parental dosage–dependent manner. PLoS Biology, 2020, 18, e3000930.	2.6	10
31	CRD 1, an Xpo1 domain protein, regulates mi RNA accumulation and crown root development in rice. Plant Journal, 2019, 100, 328-342.	2.8	23
32	The MCTP-SNARE Complex Regulates Florigen Transport in Arabidopsis. Plant Cell, 2019, 31, 2475-2490.	3.1	43
33	Molecular Basis of Natural Variation in Photoperiodic Flowering Responses. Developmental Cell, 2019, 50, 90-101.e3.	3.1	41
34	Arabidopsis Transcription Factor TCP5 Controls Plant Thermomorphogenesis by Positively Regulating PIF4 Activity. IScience, 2019, 15, 611-622.	1.9	82
35	OsSPL3, an SBP-Domain Protein, Regulates Crown Root Development in Rice. Plant Cell, 2019, 31, 1257-1275.	3.1	95
36	Functional characterization of GI and CO homologs from Eriobotrya deflexa Nakai forma koshunensis. Plant Cell Reports, 2019, 38, 533-543.	2.8	16

#	Article	IF	CITATIONS
37	Messenger RNA Modifications in Plants. Trends in Plant Science, 2019, 24, 328-341.	4.3	74
38	Whole-Genome Resequencing of a Worldwide Collection of Rapeseed Accessions Reveals the Genetic Basis of Ecotype Divergence. Molecular Plant, 2019, 12, 30-43.	3.9	175
39	The <scp>NUCLEAR FACTOR</scp> â€ <scp>CONSTANS</scp> complex antagonizes Polycomb repression to deâ€repress <i><scp>FLOWERING LOCUS</scp> T</i> expression in response to inductive long days in Arabidopsis. Plant Journal, 2018, 95, 17-29.	2.8	51
40	DNA N-Adenine Methylation in Arabidopsis thaliana. Developmental Cell, 2018, 45, 406-416.e3.	3.1	196
41	Site-specific phosphorylation of TRANSPARENT TESTA CLABRA1 mediates carbon partitioning in Arabidopsis seeds. Nature Communications, 2018, 9, 571.	5.8	51
42	LARGE ROOT ANGLE1, encoding OsPIN2, is involved in root system architecture in rice. Journal of Experimental Botany, 2018, 69, 385-397.	2.4	70
43	Characterization of Multiple C2 Domain and Transmembrane Region Proteins in Arabidopsis. Plant Physiology, 2018, 176, 2119-2132.	2.3	40
44	N6-Methyladenine DNA Methylation in Japonica and Indica Rice Genomes and Its Association with Gene Expression, Plant Development, and Stress Responses. Molecular Plant, 2018, 11, 1492-1508.	3.9	123
45	NbCIS regulates glandular trichome initiation through GA signaling in tobacco. Plant Molecular Biology, 2018, 98, 153-167.	2.0	29
46	FTIP-Dependent STM Trafficking Regulates Shoot Meristem Development in Arabidopsis. Cell Reports, 2018, 23, 1879-1890.	2.9	50
47	The TIE1 transcriptional repressor controls shoot branching by directly repressing BRANCHED1 in Arabidopsis. PLoS Genetics, 2018, 14, e1007296.	1.5	33
48	OsFTIP7 determines auxin-mediated anther dehiscence in rice. Nature Plants, 2018, 4, 495-504.	4.7	63
49	The <i>Arabidopsis</i> USL1 controls multiple aspects of development by affecting late endosome morphology. New Phytologist, 2018, 219, 1388-1405.	3.5	7
50	The Arabidopsis RING-Type E3 Ligase TEAR1 Controls Leaf Development by Targeting the TIE1 Transcriptional Repressor for Degradation. Plant Cell, 2017, 29, 243-259.	3.1	33
51	OsFTIP1-Mediated Regulation of Florigen Transport in Rice Is Negatively Regulated by the Ubiquitin-Like Domain Kinase OsUbDKî³4. Plant Cell, 2017, 29, 491-507.	3.1	55
52	Embryonic epigenetic reprogramming by a pioneer transcription factor in plants. Nature, 2017, 551, 124-128.	13.7	151
53	5-Methylcytosine RNA Methylation in Arabidopsis Thaliana. Molecular Plant, 2017, 10, 1387-1399.	3.9	181
54	DNA Topoisomerase lα Affects the Floral Transition. Plant Physiology, 2017, 173, 642-654.	2.3	14

HAO YU

#	Article	IF	CITATIONS
55	DOFT and DOFTIP1 affect reproductive development in the orchid Dendrobium Chao Praya Smile. Journal of Experimental Botany, 2017, 68, 5759-5772.	2.4	39
56	DOAP1 Promotes Flowering in the Orchid Dendrobium Chao Praya Smile. Frontiers in Plant Science, 2017, 08, 400.	1.7	47
57	Dot Blot Analysis of N6-methyladenosine RNA Modification Levels. Bio-protocol, 2017, 7, e2095.	0.2	34
58	Molecular Characterization of FT and FD Homologs from Eriobotrya deflexa Nakai forma koshunensis. Frontiers in Plant Science, 2016, 7, 8.	1.7	35
59	N6-Methyladenosine RNA Modification Regulates Shoot Stem Cell Fate in Arabidopsis. Developmental Cell, 2016, 38, 186-200.	3.1	281
60	NaKR1 regulates long-distance movement of FLOWERING LOCUS T in Arabidopsis. Nature Plants, 2016, 2, 16075.	4.7	82
61	Pin1At regulates PIN1 polar localization and root gravitropism. Nature Communications, 2016, 7, 10430.	5.8	50
62	Chromatin remodeling gene EZH2 involved in the genetic etiology of autism in Chinese Han population. Neuroscience Letters, 2016, 610, 182-186.	1.0	12
63	The WRKY Transcription Factor WRKY71/EXB1 Controls Shoot Branching by Transcriptionally Regulating <i>RAX </i> Genes in Arabidopsis. Plant Cell, 2015, 27, 3112-3127.	3.1	102
64	<i><scp>GLABROUS INFLORESCENCE STEMS</scp>3</i> (<i><scp>GIS</scp>3</i>) regulates trichome initiation and development in <i>Arabidopsis</i> . New Phytologist, 2015, 206, 220-230.	3.5	90
65	The molecular mechanism of SPOROCYTELESS/NOZZLE in controlling Arabidopsis ovule development. Cell Research, 2015, 25, 121-134.	5.7	93
66	Association of chromosome 5q21.3 polymorphisms with the exploratory eye movement dysfunction in schizophrenia. Scientific Reports, 2015, 5, 10299.	1.6	4
67	<i>TRANSPARENT TESTA GLABRA1</i> Regulates the Accumulation of Seed Storage Reserves in Arabidopsis. Plant Physiology, 2015, 169, 391-402.	2.3	71
68	Schizophrenia Related Variants in CACNA1C also Confer Risk of Autism. PLoS ONE, 2015, 10, e0133247.	1.1	55
69	New insights into the regulation of inflorescence architecture. Trends in Plant Science, 2014, 19, 158-165.	4.3	135
70	A MYB-Domain Protein EFM Mediates Flowering Responses to Environmental Cues in Arabidopsis. Developmental Cell, 2014, 30, 437-448.	3.1	112
71	The putative PRC1 RING-finger protein AtRING1A regulates flowering through repressing <i>MADS AFFECTING FLOWERING</i> genes in <i>Arabidopsis</i> . Development (Cambridge), 2014, 141, 1303-1312.	1.2	61
72	Genetic control of flower development, color and senescence of Dendrobium orchids. Scientia Horticulturae, 2014, 175, 74-86.	1.7	47

#	Article	IF	CITATIONS
73	Nuclear factor Y-mediated H3K27me3 demethylation of the SOC1 locus orchestrates flowering responses of Arabidopsis. Nature Communications, 2014, 5, 4601.	5.8	238
74	Emerging insights into florigen transport. Current Opinion in Plant Biology, 2013, 16, 607-613.	3.5	51
75	A Conserved Genetic Pathway Determines Inflorescence Architecture in Arabidopsis and Rice. Developmental Cell, 2013, 24, 612-622.	3.1	193
76	Crosstalk between GA and JA signaling mediates plant growth and defense. Plant Cell Reports, 2013, 32, 1067-1074.	2.8	145
77	Overexpression of DOSOC1, an Ortholog of Arabidopsis SOC1, Promotes Flowering in the Orchid Dendrobium Chao Parya Smile. Plant and Cell Physiology, 2013, 54, 595-608.	1.5	74
78	FTIP1 Is an Essential Regulator Required for Florigen Transport. PLoS Biology, 2012, 10, e1001313.	2.6	265
79	<i>STUNTED</i> mediates the control of cell proliferation by GA in <i>Arabidopsis</i> . Development (Cambridge), 2012, 139, 1568-1576.	1.2	41
80	A zinc finger protein gene <i>ZFP5</i> integrates phytohormone signaling to control root hair development in Arabidopsis. Plant Journal, 2012, 72, 474-490.	2.8	79
81	Insights into the molecular mechanism of RGL2-mediated inhibition of seed germination in Arabidopsis thaliana. BMC Plant Biology, 2012, 12, 179.	1.6	48
82	Genomeâ€wide identification of SOC1 and SVP targets during the floral transition in Arabidopsis. Plant Journal, 2012, 70, 549-561.	2.8	161
83	<i>Zinc Finger Protein5</i> Is Required for the Control of Trichome Initiation by Acting Upstream of <i>Zinc Finger Protein8</i> in Arabidopsis Â. Plant Physiology, 2011, 157, 673-682.	2.3	106
84	The J-Domain Protein J3 Mediates the Integration of Flowering Signals in <i>Arabidopsis</i> Â. Plant Cell, 2011, 23, 499-514.	3.1	75
85	<i>J3</i> regulation of flowering time is mainly contributed by its activity in leaves. Plant Signaling and Behavior, 2011, 6, 601-603.	1.2	5
86	AtPV42a and AtPV42b Redundantly Regulate Reproductive Development in Arabidopsis thaliana. PLoS ONE, 2011, 6, e19033.	1.1	13
87	<i>MOTHER OFFT ANDTFL1</i> regulates seed germination and fertility relevant to the brassinosteroid signaling pathway. Plant Signaling and Behavior, 2010, 5, 1315-1317.	1.2	32
88	<i>MOTHER OF FT AND TFL1</i> Regulates Seed Germination through a Negative Feedback Loop Modulating ABA Signaling in <i>Arabidopsis</i> Â Â. Plant Cell, 2010, 22, 1733-1748.	3.1	293
89	Pin1At Encoding a Peptidyl-Prolyl cis/trans Isomerase Regulates Flowering Time in Arabidopsis. Molecular Cell, 2010, 37, 112-122.	4.5	40
90	DELLAs Modulate Jasmonate Signaling via Competitive Binding to JAZs. Developmental Cell, 2010, 19, 884-894.	3.1	646

#	Article	IF	CITATIONS
91	An expanding list. Plant Signaling and Behavior, 2009, 4, 1142-1144.	1.2	10
92	AGAMOUS Controls GIANT KILLER, a Multifunctional Chromatin Modifier in Reproductive Organ Patterning and Differentiation. PLoS Biology, 2009, 7, e1000251.	2.6	83
93	Regulation of Floral Patterning by Flowering Time Genes. Developmental Cell, 2009, 16, 711-722.	3.1	344
94	Coming into bloom: the specification of floral meristems. Development (Cambridge), 2009, 136, 3379-3391.	1.2	127
95	Molecular Characterization of Arabidopsis and Brassica juncea Cu/Zn-Superoxide Dismutases Reveals Their Regulation of Shoot Regeneration. Journal of Plant Growth Regulation, 2008, 27, 99-109.	2.8	5
96	<i>AGAMOUSâ€LIKE 17</i> , a novel flowering promoter, acts in a <i>FT</i> â€independent photoperiod pathway. Plant Journal, 2008, 55, 253-265.	2.8	70
97	A Repressor Complex Governs the Integration of Flowering Signals in Arabidopsis. Developmental Cell, 2008, 15, 110-120.	3.1	443
98	Direct interaction of <i>AGL24</i> and <i>SOC1</i> integrates flowering signals in <i>Arabidopsis</i> . Development (Cambridge), 2008, 135, 1481-1491.	1.2	305
99	Global Identification of DELLA Target Genes during Arabidopsis Flower Development Â. Plant Physiology, 2008, 147, 1126-1142.	2.3	102
100	Specification of Arabidopsis floral meristem identity by repression of flowering time genes. Development (Cambridge), 2007, 134, 1901-1910.	1.2	255
101	The Homeotic Protein AGAMOUS Controls Late Stamen Development by Regulating a Jasmonate Biosynthetic Gene in <i>Arabidopsis</i> . Plant Cell, 2007, 19, 3516-3529.	3.1	182
102	l-Methionine sulfoximine as a novel selection agent for genetic transformation of orchids. Journal of Biotechnology, 2007, 131, 466-472.	1.9	30
103	Genetic and Molecular Regulation by DELLA Proteins of Trichome Development in Arabidopsis. Plant Physiology, 2007, 145, 1031-1042.	2.3	35
104	Integration of cytokinin and gibberellin signalling by Arabidopsis transcription factors GIS, ZFP8 and GIS2 in the regulation of epidermal cell fate. Development (Cambridge), 2007, 134, 2073-2081.	1.2	178
105	Floral organ identity genes in the orchidDendrobium crumenatum. Plant Journal, 2006, 46, 54-68.	2.8	132
106	GLABROUS INFLORESCENCE STEMS Modulates the Regulation by Gibberellins of Epidermal Differentiation and Shoot Maturation in Arabidopsis. Plant Cell, 2006, 18, 1383-1395.	3.1	134
107	Cloning and characterization of Arabidopsis and Brassica juncea flavin-containing amine oxidases. Journal of Experimental Botany, 2006, 57, 4155-4169.	2.4	17
108	HANABA TARANU Is a GATA Transcription Factor That Regulates Shoot Apical Meristem and Flower Development in Arabidopsis[W]. Plant Cell, 2004, 16, 2586-2600.	3.1	159

#	Article	IF	CITATIONS
109	Floral homeotic genes are targets of gibberellin signaling in flower development. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7827-7832.	3.3	249
110	Repression of AGAMOUS-LIKE 24 is a crucial step in promoting flower development. Nature Genetics, 2004, 36, 157-161.	9.4	249
111	The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS. Nature, 2004, 430, 356-360.	13.7	284
112	Functional characterisation of a cytokinin oxidase gene DSCKX1 in Dendrobium orchid. Plant Molecular Biology, 2003, 51, 237-248.	2.0	58
113	Investigation of cytokinin-deficient phenotypes in Arabidopsis by ectopic expression of orchid DSCKX1. FEBS Letters, 2003, 555, 291-296.	1.3	46
114	ACAMOUS-LIKE 24, a dosage-dependent mediator of the flowering signals. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16336-16341.	3.3	249
115	Isolation and characterization of the orchid cytokinin oxidase DSCKX1 promoter. Journal of Experimental Botany, 2002, 53, 1899-1907.	2.4	19
116	Spatial and temporal expression of the orchid floral homeotic gene DOMADS1 is mediated by its upstream regulatory regions. Plant Molecular Biology, 2002, 49, 225-237.	2.0	27
117	Molecular Genetics of Reproductive Biology in Orchids. Plant Physiology, 2001, 127, 1390-1393.	2.3	50
118	DOH1, a Class 1 knox Gene, Is Required for Maintenance of the Basic Plant Architecture and Floral Transition in Orchid. Plant Cell, 2000, 12, 2143.	3.1	0
119	Identification and Characterization of Three Orchid MADS-Box Genes of the AP1/AGL9 Subfamily during Floral Transition. Plant Physiology, 2000, 123, 1325-1336.	2.3	176
120	DOH1, a Class 1 knox Gene, Is Required for Maintenance of the Basic Plant Architecture and Floral Transition in Orchid. Plant Cell, 2000, 12, 2143-2159.	3.1	57