Michael Wagner

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7075049/michael-wagner-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

318	44,871	112	207
papers	citations	h-index	g-index
368 ext. papers	52,849 ext. citations	8.5 avg, IF	7.33 L-index

#	Paper	IF	Citations
318	Enrichment of phosphate-accumulating organisms (PAOs) in a microfluidic model biofilm system by mimicking a typical aerobic granular sludge feast/famine regime <i>Applied Microbiology and Biotechnology</i> , 2022 , 106, 1313	5.7	O
317	The novel genus, C andidatus PhosphoribacterRpreviously identified as Tetrasphaera, is the dominant polyphosphate accumulating lineage in EBPR wastewater treatment plants worldwide <i>ISME Journal</i> , 2022 ,	11.9	2
316	Raman microspectroscopy for microbiology. <i>Nature Reviews Methods Primers</i> , 2021 , 1,		9
315	Anaerobic Sulfur Oxidation Underlies Adaptation of a Chemosynthetic Symbiont to Oxic-Anoxic Interfaces. <i>MSystems</i> , 2021 , 6, e0118620	7.6	4
314	Prevalence of RT-qPCR-detected SARS-CoV-2 infection at schools: First results from the Austrian School-SARS-CoV-2 prospective cohort study. <i>Lancet Regional Health - Europe, The</i> , 2021 , 5, 100086		14
313	Genomic insights into diverse bacterial taxa that degrade extracellular DNA in marine sediments. <i>Nature Microbiology</i> , 2021 , 6, 885-898	26.6	1
312	Optofluidic Raman-activated cell sorting for targeted genome retrieval or cultivation of microbial cells with specific functions. <i>Nature Protocols</i> , 2021 , 16, 634-676	18.8	13
311	Genomic and kinetic analysis of novel Nitrospinae enriched by cell sorting. ISME Journal, 2021, 15, 732-7	745 .9	8
310	Flow-through stable isotope probing (Flow-SIP) minimizes cross-feeding in complex microbial communities. <i>ISME Journal</i> , 2021 , 15, 348-353	11.9	6
309	Albumin-targeting of an oxaliplatin-releasing platinum(iv) prodrug results in pronounced anticancer activity due to endocytotic drug uptake. <i>Chemical Science</i> , 2021 , 12, 12587-12599	9.4	8
308	Nano-scale imaging of dual stable isotope labeled oxaliplatin in human colon cancer cells reveals the nucleolus as a putative node for therapeutic effect. <i>Nanoscale Advances</i> , 2021 , 3, 249-262	5.1	2
307	Die Wechselwirkung mit ribosomalen Proteinen begleitet die Stressinduktion des Wirkstoffkandidaten BOLD-100/KP1339 im endoplasmatischen Retikulum. <i>Angewandte Chemie</i> , 2021 , 133, 5121-5126	3.6	O
306	Interaction with Ribosomal Proteins Accompanies Stress Induction of the Anticancer Metallodrug BOLD-100/KP1339 in the Endoplasmic Reticulum. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 5063-5068	16.4	17
305	Innentitelbild: Die Wechselwirkung mit ribosomalen Proteinen begleitet die Stressinduktion des Wirkstoffkandidaten BOLD-100/KP1339 im endoplasmatischen Retikulum (Angew. Chem. 10/2021). <i>Angewandte Chemie</i> , 2021 , 133, 5006-5006	3.6	
304	Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities. ISME Journal, 2021,	11.9	15
303	Cyanate is a low abundance but actively cycled nitrogen compound in soil. <i>Communications Earth & Environment</i> , 2021 , 2,	6.1	2
302	Recently photoassimilated carbon and fungus-delivered nitrogen are spatially correlated in the ectomycorrhizal tissue of Fagus sylvatica. <i>New Phytologist</i> , 2021 , 232, 2457-2474	9.8	2

(2019-2021)

Novel Alcaligenes ammonioxydans sp. nov. from wastewater treatment sludge oxidizes ammonia to N with a previously unknown pathway. <i>Environmental Microbiology</i> , 2021 , 23, 6965-6980	5.2	4
Nitrogen Kinetic Isotope Effects of Nitrification by the Complete Ammonia Oxidizer Nitrospira inopinata. <i>MSphere</i> , 2021 , e0063421	5	1
Roadmap for naming uncultivated Archaea and Bacteria. <i>Nature Microbiology</i> , 2020 , 5, 987-994	26.6	64
Microbiome definition re-visited: old concepts and new challenges. <i>Microbiome</i> , 2020 , 8, 103	16.6	271
Single cell analyses reveal contrasting life strategies of the two main nitrifiers in the ocean. <i>Nature Communications</i> , 2020 , 11, 767	17.4	29
Transcriptomic Response of Nitrosomonas europaea Transitioned from Ammonia- to Oxygen-Limited Steady-State Growth. <i>MSystems</i> , 2020 , 5,	7.6	10
Raman-based sorting of microbial cells to link functions to their genes. <i>Microbial Cell</i> , 2020 , 7, 62-65	3.9	9
Proposal to reclassify the proteobacterial classes and , and the phylum into four phyla reflecting major functional capabilities. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2020 , 70, 5972-6016	2.2	205
Archaeal nitrification is constrained by copper complexation with organic matter in municipal wastewater treatment plants. <i>ISME Journal</i> , 2020 , 14, 335-346	11.9	33
Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization. <i>Nature Communications</i> , 2020 , 11, 5104	17.4	57
A refined set of rRNA-targeted oligonucleotide probes for in situ detection and quantification of ammonia-oxidizing bacteria. <i>Water Research</i> , 2020 , 186, 116372	12.5	9
Composition and activity of nitrifier communities in soil are unresponsive to elevated temperature and CO, but strongly affected by drought. <i>ISME Journal</i> , 2020 , 14, 3038-3053	11.9	14
Exploring the upper pH limits of nitrite oxidation: diversity, ecophysiology, and adaptive traits of haloalkalitolerant Nitrospira. <i>ISME Journal</i> , 2020 , 14, 2967-2979	11.9	17
Expansion of Thaumarchaeota habitat range is correlated with horizontal transfer of ATPase operons. <i>ISME Journal</i> , 2019 , 13, 3067-3079	11.9	32
Rapid Transfer of Plant Photosynthates to Soil Bacteria via Ectomycorrhizal Hyphae and Its Interaction With Nitrogen Availability. <i>Frontiers in Microbiology</i> , 2019 , 10, 168	5.7	46
Indications for enzymatic denitrification to NO at low pH in an ammonia-oxidizing archaeon. <i>ISME Journal</i> , 2019 , 13, 2633-2638	11.9	18
Cometabolic biotransformation and microbial-mediated abiotic transformation of sulfonamides by three ammonia oxidizers. <i>Water Research</i> , 2019 , 159, 444-453	12.5	42
Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nature Microbiology, 2019, 4, 1183-1195	26.6	248
	to N with a previously unknown pathway. Environmental Microbiology, 2021, 23, 6965-6980 Nitrogen Kinetic Isotope Effects of Nitrification by the Complete Ammonia Oxidizer Nitrospira inopinata. MSphere, 2021, e0063421 Roadmap for naming uncultivated Archaea and Bacteria. Nature Microbiology, 2020, 5, 987-994 Microbiome definition re-visited: old concepts and new challenges. Microbiome, 2020, 8, 103 Single cell analyses reveal contrasting life strategies of the two main nitrifiers in the ocean. Nature Communications, 2020, 11, 767 Transcriptomic Response of Nitrosomonas europaea Transitioned from Ammonia- to Oxygen-Limited Steady-State Growth. MSystems, 2020, 5, Raman-based sorting of microbial cells to link functions to their genes. Microbial Cell, 2020, 7, 62-65 Proposal to reclassify the proteobacterial classes and, and the phylum into four phyla reflecting major functional capabilities. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 5972-6016 Archaeal nitrification is constrained by copper complexation with organic matter in municipal wastewater treatment plants. ISME Journal, 2020, 14, 335-346 Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization. Nature Communications, 2020, 11, 5104 A refined set of rRNA-targeted oligonucleotide probes for in situ detection and quantification of ammonia-oxidizing bacteria. Water Research, 2020, 186, 116372 Composition and activity of nitrifier communities in soil are unresponsive to elevated temperature and CO, but strongly affected by drought. ISME Journal, 2020, 14, 3038-3053 Exploring the upper pH limits of nitrite oxidation: diversity, ecophysiology, and adaptive traits of haloalkalitolerant Nitrospira. ISME Journal, 2020, 14, 2967-2979 Expansion of Thaumarchaeota habitat range is correlated with horizontal transfer of ATPase operons. ISME Journal, 2019, 13, 3067-3079 Rapid Transfer of Plant Photosynthates to Soil Bacteria via Ectomycorrhizal Hyphae and Its Interacti	Nitrogen Kinetic Isotope Effects of Nitrification by the Complete Ammonia Oxidizer Nitrospira inopinata. <i>Msphere</i> , 2021, e0063421 Roadmap for naming uncultivated Archaea and Bacteria. <i>Nature Microbiology</i> , 2020, 5, 987-994 26.6 Microbiome definition re-visited: old concepts and new challenges. <i>Microbiome</i> , 2020, 8, 103 16.6 Single cell analyses reveal contrasting life strategies of the two main nitrifiers in the ocean. <i>Nature Communications</i> , 2020, 11, 767 Transcriptomic Response of Nitrosomonas europaea Transitioned from Ammonia- to Oxygen-Limited Steady-State Growth. <i>Msystems</i> , 2020, 5, Raman-based sorting of microbial cells to link functions to their genes. <i>Microbiol Cell</i> , 2020, 7, 62-65 39 Proposal to reclassify the proteobacterial classes and , and the phylum into four phyla reflecting major functional capabilities. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2020, 70, 5972-6016 Archaeal nitrification is constrained by copper complexation with organic matter in municipal wastewater treatment plants. <i>ISME Journal</i> , 2020, 14, 335-346 Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization. <i>Nature Communications</i> , 2020, 11, 5104 A refined set of rRNA-targeted oligonucleotide probes for in situ detection and quantification of ammonia-oxidizing bacteria. <i>Water Research</i> , 2020, 186, 116372 Composition and activity of nitrifier communities in soil are unresponsive to elevated temperature and CO, but strongly affected by drought. <i>ISME Journal</i> , 2020, 14, 3038-3053 Exploring the upper pH limits of nitrite oxidation: diversity, ecophysiology, and adaptive traits of haloalkalitolerant Nitrospira. <i>ISME Journal</i> , 2020, 14, 2967-2979 Expansion of Thaumarchaeota habitat range is correlated with horizontal transfer of ATPase operons. <i>ISME Journal</i> , 2019, 13, 3067-3079 Rapid Transfer of Plant Photosynthates to Soil Bacteria via Ectomycorrhizal Hyphae and Its Indications for enzymatic denitrification to NO at low

283	Low yield and abiotic origin of NO formed by the complete nitrifier Nitrospira inopinata. <i>Nature Communications</i> , 2019 , 10, 1836	17.4	62
282	An automated Raman-based platform for the sorting of live cells by functional properties. <i>Nature Microbiology</i> , 2019 , 4, 1035-1048	26.6	104
281	Widespread soil bacterium that oxidizes atmospheric methane. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 8515-8524	11.5	75
280	Resolving the individual contribution of key microbial populations to enhanced biological phosphorus removal with Raman-FISH. <i>ISME Journal</i> , 2019 , 13, 1933-1946	11.9	62
279	Membrane Lipid Composition of the Moderately Thermophilic Ammonia-Oxidizing Archaeon "Nitrosotenuis uzonensis" at Different Growth Temperatures. <i>Applied and Environmental Microbiology</i> , 2019 , 85,	4.8	13
278	On the evolution and physiology of cable bacteria. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 19116-19125	11.5	61
277	Specific Micropollutant Biotransformation Pattern by the Comammox Bacterium. <i>Environmental Science & Environmental Science & </i>	10.3	31
276	Characterization of a thaumarchaeal symbiont that drives incomplete nitrification in the tropical sponge lanthella basta. <i>Environmental Microbiology</i> , 2019 , 21, 3831-3854	5.2	23
275	Machine-assisted cultivation and analysis of biofilms. Scientific Reports, 2019, 9, 8933	4.9	9
274	Wastewater, 2. Aerobic Biological Treatment 2019 , 1-55		
273	Surface-enhanced Raman spectroscopy of microorganisms: limitations and applicability on the single-cell level. <i>Analyst, The</i> , 2019 , 144, 943-953	5	28
272	Sulfate is transported at significant rates through the symbiosome membrane and is crucial for nitrogenase biosynthesis. <i>Plant, Cell and Environment</i> , 2019 , 42, 1180-1189	8.4	20
271	Cyanate and urea are substrates for nitrification by Thaumarchaeota in the marine environment. <i>Nature Microbiology</i> , 2019 , 4, 234-243	26.6	55
270	Nitrospira. <i>Trends in Microbiology</i> , 2018 , 26, 462-463	12.4	77
269	NanoSIMS and tissue autoradiography reveal symbiont carbon fixation and organic carbon transfer to giant ciliate host. <i>ISME Journal</i> , 2018 , 12, 714-727	11.9	24
268	Draft Genome Sequence of 26-4b1, an Acidotolerant Peatland Alphaproteobacterium Potentially Involved in Sulfur Cycling. <i>Genome Announcements</i> , 2018 , 6,		6
267	Biodegradation of synthetic polymers in soils: Tracking carbon into CO and microbial biomass. <i>Science Advances</i> , 2018 , 4, eaas9024	14.3	130
266	Cultivation and Genomic Analysis of "Nitrosocaldus islandicus," an Obligately Thermophilic, Ammonia-Oxidizing Thaumarchaeon from a Hot Spring Biofilm in Graendalur Valley, Iceland. <i>Frontiers in Microbiology</i> , 2018 , 9, 193	5.7	49

(2016-2018)

265	Characterization of the First "Nitrotoga" Isolate Reveals Metabolic Versatility and Separate Evolution of Widespread Nitrite-Oxidizing Bacteria. <i>MBio</i> , 2018 , 9,	7.8	58
264	Ammonia Monooxygenase-Mediated Cometabolic Biotransformation and Hydroxylamine-Mediated Abiotic Transformation of Micropollutants in an AOB/NOB Coculture. <i>Environmental Science & Environmental Science & Technology</i> , 2018 , 52, 9196-9205	10.3	36
263	Long-distance electron transport in individual, living cable bacteria. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 5786-5791	11.5	62
262	Microbial nitrogen limitation in the mammalian large intestine. <i>Nature Microbiology</i> , 2018 , 3, 1441-1450	26.6	48
261	Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system. <i>ISME Journal</i> , 2017 , 11, 1142-1157	11.9	119
260	Capturing the genetic makeup of the active microbiome in situ. ISME Journal, 2017, 11, 1949-1963	11.9	55
259	Crenothrix are major methane consumers in stratified lakes. ISME Journal, 2017, 11, 2124-2140	11.9	87
258	Giant viruses with an expanded complement of translation system components. <i>Science</i> , 2017 , 356, 82-8	3 5 3.3	148
257	Abiotic Conversion of Extracellular NHOH Contributes to NO Emission during Ammonia Oxidation. <i>Environmental Science & Environmental &</i>	10.3	73
256	Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. <i>Nature</i> , 2017 , 549, 269-272	50.4	349
255	Ammonia-oxidising archaea living at low pH: Insights from comparative genomics. <i>Environmental Microbiology</i> , 2017 , 19, 4939-4952	5.2	57
254	-Targeted Polymerase Chain Reaction Primers for the Specific Detection and Quantification of Comammox in the Environment. <i>Frontiers in Microbiology</i> , 2017 , 8, 1508	5.7	210
253	Ecophysiology of an uncultivated lineage of Aigarchaeota from an oxic, hot spring filamentous R treamerRcommunity. <i>ISME Journal</i> , 2016 , 10, 210-24	11.9	33
252	The inhibitory effects of reject water on nitrifying populations grown at different biofilm thickness. <i>Water Research</i> , 2016 , 104, 292-302	12.5	33
251	A New Perspective on Microbes Formerly Known as Nitrite-Oxidizing Bacteria. <i>Trends in Microbiology</i> , 2016 , 24, 699-712	12.4	362
250	Multi-scale imaging of anticancer platinum(iv) compounds in murine tumor and kidney. <i>Chemical Science</i> , 2016 , 7, 3052-3061	9.4	32
249	Back to the Future of Soil Metagenomics. Frontiers in Microbiology, 2016, 7, 73	5.7	82
248	Candidatus Nitrosotenuis 2016 , 1-9		1

247	Candidatus Nitrosotenuaceae 2016 , 1-5		1
246	Biotransformation of Two Pharmaceuticals by the Ammonia-Oxidizing Archaeon Nitrososphaera gargensis. <i>Environmental Science & Environmental Science & </i>	10.3	47
245	Single cell stable isotope probing in microbiology using Raman microspectroscopy. <i>Current Opinion in Biotechnology</i> , 2016 , 41, 34-42	11.4	126
244	Inhibitory effects of C2 to C10 1-alkynes on ammonia oxidation in two Nitrososphaera species. <i>Applied and Environmental Microbiology</i> , 2015 , 81, 1942-8	4.8	36
243	Cyanate as an energy source for nitrifiers. <i>Nature</i> , 2015 , 524, 105-8	50.4	160
242	Microbiology: Conductive consortia. <i>Nature</i> , 2015 , 526, 513-4	50.4	10
241	Intestinal Epithelial Cell Tyrosine Kinase 2 Transduces IL-22 Signals To Protect from Acute Colitis. Journal of Immunology, 2015 , 195, 5011-24	5.3	33
240	Endosymbionts escape dead hydrothermal vent tubeworms to enrich the free-living population. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11300-5	11.5	39
239	Advancements in the application of NanoSIMS and Raman microspectroscopy to investigate the activity of microbial cells in soils. <i>FEMS Microbiology Ecology</i> , 2015 , 91,	4.3	72
238	Complete nitrification by Nitrospira bacteria. <i>Nature</i> , 2015 , 528, 504-9	50.4	1148
238	Complete nitrification by Nitrospira bacteria. <i>Nature</i> , 2015 , 528, 504-9 Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 11371-6	50.4	1148 265
	Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira.		
237	Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11371-6 Functionally relevant diversity of closely related Nitrospira in activated sludge. ISME Journal, 2015,	11.5	265
² 37	Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 11371-6 Functionally relevant diversity of closely related Nitrospira in activated sludge. <i>ISME Journal</i> , 2015 , 9, 643-55 Revisiting NITixation in Guerrero Negro intertidal microbial mats with a functional single-cell	11.5	265
237236235	Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 11371-6 Functionally relevant diversity of closely related Nitrospira in activated sludge. <i>ISME Journal</i> , 2015 , 9, 643-55 Revisiting NIFixation in Guerrero Negro intertidal microbial mats with a functional single-cell approach. <i>ISME Journal</i> , 2015 , 9, 485-96 A nanoscale secondary ion mass spectrometry study of dinoflagellate functional diversity in	11.5	265 112 52
237236235234	Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 11371-6 Functionally relevant diversity of closely related Nitrospira in activated sludge. <i>ISME Journal</i> , 2015 , 9, 643-55 Revisiting NIfixation in Guerrero Negro intertidal microbial mats with a functional single-cell approach. <i>ISME Journal</i> , 2015 , 9, 485-96 A nanoscale secondary ion mass spectrometry study of dinoflagellate functional diversity in reef-building corals. <i>Environmental Microbiology</i> , 2015 , 17, 3570-80 Intestinal Microbiota Signatures Associated with Inflammation History in Mice Experiencing	11.5 11.9 11.9 5.2	265 112 52 44
237236235234233	Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 11371-6 Functionally relevant diversity of closely related Nitrospira in activated sludge. <i>ISME Journal</i> , 2015 , 9, 643-55 Revisiting NIfixation in Guerrero Negro intertidal microbial mats with a functional single-cell approach. <i>ISME Journal</i> , 2015 , 9, 485-96 A nanoscale secondary ion mass spectrometry study of dinoflagellate functional diversity in reef-building corals. <i>Environmental Microbiology</i> , 2015 , 17, 3570-80 Intestinal Microbiota Signatures Associated with Inflammation History in Mice Experiencing Recurring Colitis. <i>Frontiers in Microbiology</i> , 2015 , 6, 1408 Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells.	11.5 11.9 11.9 5.2 5.7	265 112 52 44 67

229	NanoSIMS combined with fluorescence microscopy as a tool for subcellular imaging of isotopically labeled platinum-based anticancer drugs. <i>Chemical Science</i> , 2014 , 5, 3135	9.4	71
228	Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation. <i>Science</i> , 2014 , 345, 1052-4	33.3	99
227	Confocal laser scanning microscopy as a tool to validate the efficiency of membrane cleaning procedures to remove biofilms. <i>Separation and Purification Technology</i> , 2014 , 122, 402-411	8.3	18
226	Diversity, Environmental Genomics, and Ecophysiology of Nitrite-Oxidizing Bacteria 2014 , 295-322		16
225	Fish-Microautoradiography and Isotope Arrays for Monitoring the Ecophysiology of Microbes Within Their Natural Environment 2014 , 305-316		2
224	Genomic encyclopedia of bacteria and archaea: sequencing a myriad of type strains. <i>PLoS Biology</i> , 2014 , 12, e1001920	9.7	146
223	Biology of a widespread uncultivated archaeon that contributes to carbon fixation in the subsurface. <i>Nature Communications</i> , 2014 , 5, 5497	17.4	86
222	Type I interferons have opposing effects during the emergence and recovery phases of colitis. <i>European Journal of Immunology</i> , 2014 , 44, 2749-60	6.1	23
221	NxrB encoding the beta subunit of nitrite oxidoreductase as functional and phylogenetic marker for nitrite-oxidizing Nitrospira. <i>Environmental Microbiology</i> , 2014 , 16, 3055-71	5.2	193
220	High-fat diet alters gut microbiota physiology in mice. <i>ISME Journal</i> , 2014 , 8, 295-308	11.9	393
219	Einzelzellanalyse lebender Mikroorganismen. <i>BioSpektrum</i> , 2013 , 19, 631-633	0.1	
218	Host-compound foraging by intestinal microbiota revealed by single-cell stable isotope probing. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 4720-5	11.5	147
217	Interactions of nitrifying bacteria and heterotrophs: identification of a Micavibrio-like putative predator of Nitrospira spp. <i>Applied and Environmental Microbiology</i> , 2013 , 79, 2027-37	4.8	67
216	Oxidation of Inorganic Nitrogen Compounds as an Energy Source 2013 , 83-118		11
215	Depletion of unwanted nucleic acid templates by selective cleavage: LNAzymes, catalytically active oligonucleotides containing locked nucleic acids, open a new window for detecting rare microbial community members. <i>Applied and Environmental Microbiology</i> , 2013 , 79, 1534-44	4.8	9
214	Enrichment and genome sequence of the group I.1a ammonia-oxidizing Archaeon "Ca. Nitrosotenuis uzonensis" representing a clade globally distributed in thermal habitats. <i>PLoS ONE</i> , 2013 , 8, e80835	3.7	68
213	New trends in fluorescence in situ hybridization for identification and functional analyses of microbes. <i>Current Opinion in Biotechnology</i> , 2012 , 23, 96-102	11.4	72
212	amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions. <i>Environmental Microbiology</i> , 2012 , 14, 525-39	5.2	402

211	The genome of the ammonia-oxidizing Candidatus Nitrososphaera gargensis: insights into metabolic versatility and environmental adaptations. <i>Environmental Microbiology</i> , 2012 , 14, 3122-45	5.2	239
210	Zero-valent sulphur is a key intermediate in marine methane oxidation. <i>Nature</i> , 2012 , 491, 541-6	50.4	389
209	Intracellular vesicles as reproduction elements in cell wall-deficient L-form bacteria. <i>PLoS ONE</i> , 2012 , 7, e38514	3.7	25
208	Phylotype-level 16S rRNA analysis reveals new bacterial indicators of health state in acute murine colitis. <i>ISME Journal</i> , 2012 , 6, 2091-106	11.9	208
207	Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi. <i>ISME Journal</i> , 2012 , 6, 2245-56	11.9	216
206	Bacteriocyte-associated gammaproteobacterial symbionts of the Adelges nordmannianae/piceae complex (Hemiptera: Adelgidae). <i>ISME Journal</i> , 2012 , 6, 384-96	11.9	18
205	Complete genome sequences of Desulfosporosinus orientis DSM765T, Desulfosporosinus youngiae DSM17734T, Desulfosporosinus meridiei DSM13257T, and Desulfosporosinus acidiphilus DSM22704T. <i>Journal of Bacteriology</i> , 2012 , 194, 6300-1	3.5	46
204	A straightforward DOPE (double labeling of oligonucleotide probes)-FISH (fluorescence in situ hybridization) method for simultaneous multicolor detection of six microbial populations. <i>Applied and Environmental Microbiology</i> , 2012 , 78, 5138-42	4.8	34
203	Sulfate-reducing microorganisms in wetlands - fameless actors in carbon cycling and climate change. <i>Frontiers in Microbiology</i> , 2012 , 3, 72	5.7	174
202	Modeling formamide denaturation of probe-target hybrids for improved microarray probe design in microbial diagnostics. <i>PLoS ONE</i> , 2012 , 7, e43862	3.7	10
201	Barcoded primers used in multiplex amplicon pyrosequencing bias amplification. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 7846-9	4.8	377
200	In situ techniques and digital image analysis methods for quantifying spatial localization patterns of nitrifiers and other microorganisms in biofilm and flocs. <i>Methods in Enzymology</i> , 2011 , 496, 185-215	1.7	18
199	The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. <i>Current Opinion in Microbiology</i> , 2011 , 14, 300-6	7.9	403
198	Systematic spatial bias in DNA microarray hybridization is caused by probe spot position-dependent variability in lateral diffusion. <i>PLoS ONE</i> , 2011 , 6, e23727	3.7	16
197	Chloroflexi bacteria are more diverse, abundant, and similar in high than in low microbial abundance sponges. <i>FEMS Microbiology Ecology</i> , 2011 , 78, 497-510	4.3	57
196	Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 8420-5	11.5	644
195	Proteomic analysis reveals a virtually complete set of proteins for translation and energy generation in elementary bodies of the amoeba symbiont Protochlamydia amoebophila. <i>Proteomics</i> , 2011 , 11, 1868-92	4.8	12
194	Microorganisms with novel dissimilatory (bi)sulfite reductase genes are widespread and part of the core microbiota in low-sulfate peatlands. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 1231-42	4.8	35

(2009-2011)

193	autotrophic ammonia oxidizers. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 16771-6	11.5	239
192	Unexpected diversity of chlorite dismutases: a catalytically efficient dimeric enzyme from Nitrobacter winogradskyi. <i>Journal of Bacteriology</i> , 2011 , 193, 2408-17	3.5	66
191	Paracatenula, an ancient symbiosis between thiotrophic Alphaproteobacteria and catenulid flatworms. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 12078-83	11.5	57
190	Raman microspectroscopy reveals long-term extracellular activity of Chlamydiae. <i>Molecular Microbiology</i> , 2010 , 77, 687-700	4.1	80
189	Crenarchaeol dominates the membrane lipids of Candidatus Nitrososphaera gargensis, a thermophilic group I.1b Archaeon. <i>ISME Journal</i> , 2010 , 4, 542-52	11.9	136
188	A Rare biosphereRmicroorganism contributes to sulfate reduction in a peatland. <i>ISME Journal</i> , 2010 , 4, 1591-602	11.9	208
187	Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) improves signal intensity and increases rRNA accessibility. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 922-6	4.8	121
186	Inclusion membrane proteins of Protochlamydia amoebophila UWE25 reveal a conserved mechanism for host cell interaction among the Chlamydiae. <i>Journal of Bacteriology</i> , 2010 , 192, 5093-107	<u>3</u> .5	27
185	The genome of the amoeba symbiont "Candidatus Amoebophilus asiaticus" reveals common mechanisms for host cell interaction among amoeba-associated bacteria. <i>Journal of Bacteriology</i> , 2010 , 192, 1045-57	3.5	113
184	Label-free in situ SERS imaging of biofilms. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 10184-94	3.4	75
183	Structural and functional characterisation of the chlorite dismutase from the nitrite-oxidizing bacterium "Candidatus Nitrospira defluvii": identification of a catalytically important amino acid residue. <i>Journal of Structural Biology</i> , 2010 , 172, 331-42	3.4	68
182	Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. <i>Trends in Microbiology</i> , 2010 , 18, 331-40	12.4	390
181	A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 13479-84	11.5	488
180	Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. <i>Environmental Microbiology</i> , 2010 , 12, 2070-82	5.2	298
179	Raman microscopy and surface-enhanced Raman scattering (SERS) for in situ analysis of biofilms. Journal of Biophotonics, 2010 , 3, 548-56	3.1	38
178	Proteomic analysis of the outer membrane of Protochlamydia amoebophila elementary bodies. <i>Proteomics</i> , 2010 , 10, 4363-76	4.8	12
177	Comprehensive in silico prediction and analysis of chlamydial outer membrane proteins reflects evolution and life style of the Chlamydiae. <i>BMC Genomics</i> , 2009 , 10, 634	4.5	26
176	Towards a nondestructive chemical characterization of biofilm matrix by Raman microscopy. Analytical and Bioanalytical Chemistry, 2009 , 393, 197-206	4.4	122

175	Isotope array analysis of Rhodocyclales uncovers functional redundancy and versatility in an activated sludge. <i>ISME Journal</i> , 2009 , 3, 1349-64	11.9	74
174	High genetic similarity between two geographically distinct strains of the sulfur-oxidizing symbiont Randidatus Thiobios zoothamnicoliR <i>FEMS Microbiology Ecology</i> , 2009 , 67, 229-41	4.3	16
173	Reverse dissimilatory sulfite reductase as phylogenetic marker for a subgroup of sulfur-oxidizing prokaryotes. <i>Environmental Microbiology</i> , 2009 , 11, 289-99	5.2	111
172	Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. <i>Annual Review of Microbiology</i> , 2009 , 63, 411-29	17.5	227
171	Microbial diversity and the genetic nature of microbial species. <i>Nature Reviews Microbiology</i> , 2008 , 6, 431-40	22.2	429
170	Diversity and mode of transmission of ammonia-oxidizing archaea in marine sponges. <i>Environmental Microbiology</i> , 2008 , 10, 1087-94	5.2	102
169	Environmental genomics reveals a functional chlorite dismutase in the nitrite-oxidizing bacterium C andidatus Nitrospira defluviiR <i>Environmental Microbiology</i> , 2008 , 10, 3043-56	5.2	86
168	probeChecka central resource for evaluating oligonucleotide probe coverage and specificity. <i>Environmental Microbiology</i> , 2008 , 10, 2894-8	5.2	154
167	Quantification of target molecules needed to detect microorganisms by fluorescence in situ hybridization (FISH) and catalyzed reporter deposition-FISH. <i>Applied and Environmental Microbiology</i> , 2008 , 74, 5068-77	4.8	104
166	Lawsonia intracellularis contains a gene encoding a functional rickettsia-like ATP/ADP translocase for host exploitation. <i>Journal of Bacteriology</i> , 2008 , 190, 5746-52	3.5	34
165	Diversity of bacterial endosymbionts of environmental acanthamoeba isolates. <i>Applied and Environmental Microbiology</i> , 2008 , 74, 5822-31	4.8	77
164	A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 2134-9	11.5	548
163	Chlamydia-like bacteria in respiratory samples of community-acquired pneumonia patients. <i>FEMS Microbiology Letters</i> , 2008 , 281, 198-202	2.9	65
162	Evolution and Ecology of Microbes Dissimilating Sulfur Compounds: Insights from Siroheme Sulfite Reductases 2008 , 46-59		15
161	Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. <i>Microbiology and Molecular Biology Reviews</i> , 2007 , 71, 295-347	13.2	931
160	Who eats what, where and when? Isotope-labelling experiments are coming of age. <i>ISME Journal</i> , 2007 , 1, 103-10	11.9	21 0
159	Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea. <i>Environmental Microbiology</i> , 2007 , 9, 131-42	5.2	193
158	An Acanthamoeba sp. containing two phylogenetically different bacterial endosymbionts. <i>Environmental Microbiology</i> , 2007 , 9, 1604-9	5.2	40

(2006-2007)

157	Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. <i>Environmental Microbiology</i> , 2007 , 9, 1878-89	5.2	257
156	Diversity of sulfate-reducing bacteria from an extreme hypersaline sediment, Great Salt Lake (Utah). <i>FEMS Microbiology Ecology</i> , 2007 , 60, 287-98	4.3	97
155	Unravelling microbial communities with DNA-microarrays: challenges and future directions. <i>Microbial Ecology</i> , 2007 , 53, 498-506	4.4	86
154	Quantification of uncultured microorganisms by fluorescence microscopy and digital image analysis. <i>Applied Microbiology and Biotechnology</i> , 2007 , 75, 237-48	5.7	73
153	probeBasean online resource for rRNA-targeted oligonucleotide probes: new features 2007. <i>Nucleic Acids Research</i> , 2007 , 35, D800-4	20.1	373
152	Improved 16S rRNA-targeted probe set for analysis of sulfate-reducing bacteria by fluorescence in situ hybridization. <i>Journal of Microbiological Methods</i> , 2007 , 69, 523-8	2.8	87
151	Grazing of a common species of soil protozoa (Acanthamoeba castellanii) affects rhizosphere bacterial community composition and root architecture of rice (Oryza sativa L.). <i>Soil Biology and Biochemistry</i> , 2006 , 38, 1665-1672	7.5	63
150	Wastewater treatment: a model system for microbial ecology. <i>Trends in Biotechnology</i> , 2006 , 24, 483-9	15.1	174
149	Cohn® Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 2363-7	11.5	196
148	"Candidatus Thiobios zoothamnicoli," an ectosymbiotic bacterium covering the giant marine ciliate Zoothamnium niveum. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 2014-21	4.8	61
147	The Lithoautotrophic Ammonia-Oxidizing Bacteria 2006 , 778-811		107
146	Oxidation of Inorganic Nitrogen Compounds as an Energy Source 2006 , 457-495		57
145	A vista for microbial ecology and environmental biotechnology. <i>Environmental Science & Environmental </i>	10.3	103
144	Ecophysiology and niche differentiation of Nitrospira-like bacteria, the key nitrite oxidizers in wastewater treatment plants. <i>Water Science and Technology</i> , 2006 , 54, 21-7	2.2	25
143	daime, a novel image analysis program for microbial ecology and biofilm research. <i>Environmental Microbiology</i> , 2006 , 8, 200-13	5.2	454
142	Selective enrichment and molecular characterization of a previously uncultured Nitrospira-like bacterium from activated sludge. <i>Environmental Microbiology</i> , 2006 , 8, 405-15	5.2	111
141	Nitrite concentration influences the population structure of Nitrospira-like bacteria. <i>Environmental Microbiology</i> , 2006 , 8, 1487-95	5.2	171
140	Tapping the nucleotide pool of the host: novel nucleotide carrier proteins of Protochlamydia amoebophila. <i>Molecular Microbiology</i> , 2006 , 60, 1534-45	4.1	64

139	Deciphering the evolution and metabolism of an anammox bacterium from a community genome. <i>Nature</i> , 2006 , 440, 790-4	50.4	861
138	Linking microbial community structure with function: fluorescence in situ hybridization-microautoradiography and isotope arrays. <i>Current Opinion in Biotechnology</i> , 2006 , 17, 83-9	9 1 1.4	146
137	The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. <i>Current Opinion in Biotechnology</i> , 2006 , 17, 241-9	11.4	351
136	Non-sulfate-reducing, syntrophic bacteria affiliated with desulfotomaculum cluster I are widely distributed in methanogenic environments. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 2080-91	4.8	147
135	Applications of nucleic acid microarrays in soil microbial ecology. 2006 , 18-41		3
134	16S rRNA gene-based oligonucleotide microarray for environmental monitoring of the betaproteobacterial order "Rhodocyclales". <i>Applied and Environmental Microbiology</i> , 2005 , 71, 1373-86	4.8	209
133	Biomarkers for in situ detection of anaerobic ammonium-oxidizing (anammox) bacteria. <i>Applied and Environmental Microbiology</i> , 2005 , 71, 1677-84	4.8	294
132	Functional marker genes for identification of sulfate-reducing prokaryotes. <i>Methods in Enzymology</i> , 2005 , 397, 469-89	1.7	74
131	Oligonucleotide microarray for identification of Enterococcus species. <i>FEMS Microbiology Letters</i> , 2005 , 246, 133-42	2.9	45
130	Crystal ball. The community level: physiology and interactions of prokaryotes in the wilderness. <i>Environmental Microbiology</i> , 2005 , 7, 483-5	5.2	4
129	Evolutionary history of the genus Listeria and its virulence genes. <i>Systematic and Applied Microbiology</i> , 2005 , 28, 1-18	4.2	95
128	Evaluating heterotrophic growth in a nitrifying biofilm reactor using fluorescence in situ hybridization and mathematical modeling. <i>Water Science and Technology</i> , 2005 , 52, 135-141	2.2	17
127	New insights into metabolic properties of marine bacteria encoding proteorhodopsins. <i>PLoS Biology</i> , 2005 , 3, e273	9.7	180
126	Malikia granosa gen. nov., sp. nov., a novel polyhydroxyalkanoate- and polyphosphate-accumulating bacterium isolated from activated sludge, and reclassification of Pseudomonas spinosa as Malikia spinosa comb. nov. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2005 , 55, 621-629	2.2	60
125	RCandidatus Protochlamydia amoebophilaRan endosymbiont of Acanthamoeba spp. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2005 , 55, 1863-1866	2.2	77
124	Recovery of an environmental Chlamydia strain from activated sludge by co-cultivation with Acanthamoeba sp. <i>Microbiology (United Kingdom)</i> , 2005 , 151, 301-309	2.9	63
123	Lateral gene transfer of dissimilatory (bi)sulfite reductase revisited. <i>Journal of Bacteriology</i> , 2005 , 187, 2203-8	3.5	132
122	Amoebae as training grounds for intracellular bacterial pathogens. <i>Applied and Environmental Microbiology</i> , 2005 , 71, 20-8	4.8	379

(2003-2004)

121	Use of stable-isotope probing, full-cycle rRNA analysis, and fluorescence in situ hybridization-microautoradiography to study a methanol-fed denitrifying microbial community. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 588-96	4.8	192	
120	ATP/ADP translocases: a common feature of obligate intracellular amoebal symbionts related to Chlamydiae and Rickettsiae. <i>Journal of Bacteriology</i> , 2004 , 186, 683-91	3.5	135	
119	Discovery of the novel candidate phylum "Poribacteria" in marine sponges. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 3724-32	4.8	238	
118	Ottowia thiooxydans gen. nov., sp. nov., a novel facultatively anaerobic, N2O-producing bacterium isolated from activated sludge, and transfer of Aquaspirillum gracile to Hylemonella gracilis gen. nov., comb. nov. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2004 , 54, 99-106	2.2	84	
117	A candidate NAD+ transporter in an intracellular bacterial symbiont related to Chlamydiae. <i>Nature</i> , 2004 , 432, 622-5	50.4	85	
116	Chlamydial endocytobionts of free-living amoebae differentially affect the growth rate of their hosts. <i>European Journal of Protistology</i> , 2004 , 40, 57-60	3.6	11	
115	Microarray and functional gene analyses of sulfate-reducing prokaryotes in low-sulfate, acidic fens reveal cooccurrence of recognized genera and novel lineages. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 6998-7009	4.8	164	
114	Illuminating the evolutionary history of chlamydiae. <i>Science</i> , 2004 , 304, 728-30	33.3	333	
113	Bacterial endosymbionts of free-living amoebae. <i>Journal of Eukaryotic Microbiology</i> , 2004 , 51, 509-14	3.6	126	
112	16S rRNA and amoA-based phylogeny of 12 novel betaproteobacterial ammonia-oxidizing isolates: extension of the dataset and proposal of a new lineage within the nitrosomonads. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2003 , 53, 1485-1494	2.2	231	
111	Use of Microautoradiography to Study in situ Physiology of Bacteria in Biofilms. <i>Reviews in Environmental Science and Biotechnology</i> , 2003 , 2, 261-268	13.9	8	
110	Monitoring microbial diversity and natural product profiles of the sponge Aplysina cavernicola following transplantation. <i>Marine Biology</i> , 2003 , 142, 685-692	2.5	84	
109	Anaerobic ammonium oxidation by marine and freshwater planctomycete-like bacteria. <i>Applied Microbiology and Biotechnology</i> , 2003 , 63, 107-14	5.7	143	
108	Substrate uptake in extremely halophilic microbial communities revealed by microautoradiography and fluorescence in situ hybridization. <i>Extremophiles</i> , 2003 , 7, 409-13	3	53	
107	Nucleic acid-based, cultivation-independent detection of Listeria spp and genotypes of L monocytogenes. <i>FEMS Immunology and Medical Microbiology</i> , 2003 , 35, 215-25		41	
106	Related assemblages of sulphate-reducing bacteria associated with ultradeep gold mines of South Africa and deep basalt aquifers of Washington State. <i>Environmental Microbiology</i> , 2003 , 5, 267-77	5.2	88	
105	Structure and activity of multiple nitrifying bacterial populations co-existing in a biofilm. <i>Environmental Microbiology</i> , 2003 , 5, 355-69	5.2	121	
104	Community analysis of ammonia and nitrite oxidizers during start-up of nitritation reactors. <i>Applied and Environmental Microbiology</i> , 2003 , 69, 3213-22	4.8	116	

103	Filamentous "Epsilonproteobacteria" dominate microbial mats from sulfidic cave springs. <i>Applied and Environmental Microbiology</i> , 2003 , 69, 5503-11	4.8	103
102	Characterization of activated sludge flocs by confocal laser scanning microscopy and image analysis. <i>Water Research</i> , 2003 , 37, 2043-52	12.5	82
101	Fluorescence in situ hybridisation for the identification and characterisation of prokaryotes. <i>Current Opinion in Microbiology</i> , 2003 , 6, 302-9	7.9	298
100	The isotope array, a new tool that employs substrate-mediated labeling of rRNA for determination of microbial community structure and function. <i>Applied and Environmental Microbiology</i> , 2003 , 69, 6875	- 81 7 ⁸	197
99	probeBase: an online resource for rRNA-targeted oligonucleotide probes. <i>Nucleic Acids Research</i> , 2003 , 31, 514-6	20.1	302
98	Population dynamics in wastewater treatment plants with enhanced biological phosphorus removal operated with and without nitrogen removal. <i>Water Science and Technology</i> , 2002 , 46, 163-170	2.2	27
97	Deammonification in biofilm systems: population structure and function. <i>Water Science and Technology</i> , 2002 , 46, 223-231	2.2	33
96	The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. <i>Systematic and Applied Microbiology</i> , 2002 , 25, 84-99	4.2	310
95	Bacterial community composition and function in sewage treatment systems. <i>Current Opinion in Biotechnology</i> , 2002 , 13, 218-27	11.4	435
94	Improved nitrogen removal by application of new nitrogen-cycle bacteria. <i>Reviews in Environmental Science and Biotechnology</i> , 2002 , 1, 51-63	13.9	77
93	Origins and diversification of sulfate-respiring microorganisms. <i>Antonie Van Leeuwenhoek</i> , 2002 , 81, 189-95	2.1	54
92	Microbial community composition and function in wastewater treatment plants. <i>Antonie Van Leeuwenhoek</i> , 2002 , 81, 665-80	2.1	287
91	The anammox case-a new experimental manifesto for microbiological eco-physiology. <i>Antonie Van Leeuwenhoek</i> , 2002 , 81, 693-702	2.1	77
90	Molecular evidence for a uniform microbial community in sponges from different oceans. <i>Applied and Environmental Microbiology</i> , 2002 , 68, 4431-40	4.8	531
89	Detection and differentiation of chlamydiae by fluorescence in situ hybridization. <i>Applied and Environmental Microbiology</i> , 2002 , 68, 4081-9	4.8	64
88	Abundance and phylogenetic affiliation of iron reducers in activated sludge as assessed by fluorescence in situ hybridization and microautoradiography. <i>Applied and Environmental Microbiology</i> , 2002 , 68, 4629-36	4.8	86
87	The genus Caedibacter comprises endosymbionts of Paramecium spp. related to the Rickettsiales (Alphaproteobacteria) and to Francisella tularensis (Gammaproteobacteria). <i>Applied and Environmental Microbiology</i> , 2002 , 68, 6043-50	4.8	96
86	Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. <i>Applied and Environmental Microbiology</i> , 2002 , 68, 500	 5 4 -81	541

(2001-2002)

85	Modern scientific methods and their potential in wastewater science and technology. <i>Water Research</i> , 2002 , 36, 370-93	12.5	53
84	Nitrifying and heterotrophic population dynamics in biofilm reactors: effects of hydraulic retention time and the presence of organic carbon. <i>Water Research</i> , 2002 , 36, 469-81	12.5	184
83	Various bacterial pathogens and symbionts infect the amoeba Dictyostelium discoideum. <i>International Journal of Medical Microbiology</i> , 2002 , 291, 615-24	3.7	89
82	Obligate bacterial endosymbionts of Acanthamoeba spp. related to the beta-Proteobacteria: proposal of Candidatus Procabacter acanthamoebaeRgen. nov., sp. nov. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2002 , 52, 599-605	2.2	47
81	Deammonification in biofilm systems: population structure and function. <i>Water Science and Technology</i> , 2002 , 46, 223-31	2.2	4
80	Isolation and properties of obligately chemolithoautotrophic and extremely alkali-tolerant ammonia-oxidizing bacteria from Mongolian soda lakes. <i>Archives of Microbiology</i> , 2001 , 176, 170-7	3	60
79	Nitrification performance and nitrifier community composition of a chemostat and a membrane-assisted bioreactor for the nitrification of sludge reject water. <i>Bioprocess and Biosystems Engineering</i> , 2001 , 24, 203-210	3.7	27
78	Members of the Cytophaga-Flavobacterium-Bacteroides phylum as intracellular bacteria of acanthamoebae: proposal of Candidatus Amoebophilus asiaticus Environmental Microbiology, 2001 , 3, 440-9	5.2	76
77	16S-23S rDNA intergenic spacer and 23S rDNA of anaerobic ammonium-oxidizing bacteria: implications for phylogeny and in situ detection. <i>Environmental Microbiology</i> , 2001 , 3, 450-9	5.2	205
76	Microbiology and application of the anaerobic ammonium oxidation (RanammoxR) process. <i>Current Opinion in Biotechnology</i> , 2001 , 12, 283-8	11.4	443
75	Bakterien, die in AcanthamBen leben: Dasein im Verborgenen. <i>Biologie in Unserer Zeit</i> , 2001 , 31, 160-168	80.1	1
74	Evidence for additional genus-level diversity of Chlamydiales in the environment. <i>FEMS Microbiology Letters</i> , 2001 , 204, 71-4	2.9	59
73	Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. <i>FEMS Microbiology Ecology</i> , 2001 , 35, 305-312	4.3	262
72	Endosymbiotic sulphate-reducing and sulphide-oxidizing bacteria in an oligochaete worm. <i>Nature</i> , 2001 , 411, 298-302	50.4	159
71	Cultivation-independent, semiautomatic determination of absolute bacterial cell numbers in environmental samples by fluorescence in situ hybridization. <i>Applied and Environmental Microbiology</i> , 2001 , 67, 5810-8	4.8	147
70	Assessment of metabolic potential of biofilm-associated bacteria. <i>Methods in Enzymology</i> , 2001 , 336, 265-76	1.7	4
69	Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm. <i>Applied and Environmental Microbiology</i> , 2001 , 67, 1351-62	4.8	264
68	In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. <i>Applied and Environmental Microbiology</i> , 2001 , 67, 5273-84	4.8	615

67	Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. <i>Journal of Bacteriology</i> , 2001 , 183, 6028-35	3.5	280
66	Nitrification in sequencing biofilm batch reactors: lessons from molecular approaches. <i>Water Science and Technology</i> , 2001 , 43, 9-18	2.2	87
65	Quantification of bacterial populations in complex ecosystems using fluorescent in situ hybridization, confocal laser scanning microscopy and image analysis. <i>Genetics Selection Evolution</i> , 2001 , 33, S307	4.9	4
64	Nitrification in sequencing biofilm batch reactors: lessons from molecular approaches. <i>Water Science and Technology</i> , 2001 , 43, 9-18	2.2	22
63	Ecological study of a bioaugmentation failure. Environmental Microbiology, 2000, 2, 179-90	5.2	231
62	Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. <i>Systematic and Applied Microbiology</i> , 2000 , 23, 93-106	4.2	550
61	Novel Nitrospira-like bacteria as dominant nitrite-oxidizers in biofilms from wastewater treatment plants: diversity and in situ physiology. <i>Water Science and Technology</i> , 2000 , 41, 85-90	2.2	100
60	Successful and unsuccessful bioaugmentation experiments monitored by fluorescent in situ hybridization. <i>Water Science and Technology</i> , 2000 , 41, 61-68	2.2	44
59	Effect of long-term idle periods on the performance of sequencing batch reactors. <i>Water Science and Technology</i> , 2000 , 41, 105-113	2.2	96
58	Phylogenetic analysis of and oligonucleotide probe development for eikelboom type 021N filamentous bacteria isolated from bulking activated sludge. <i>Applied and Environmental Microbiology</i> , 2000 , 66, 5043-52	4.8	104
57	Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. <i>Applied and Environmental Microbiology</i> , 2000 , 66, 5368-82	4.8	872
56	Phylogenetic diversity among geographically dispersed Chlamydiales endosymbionts recovered from clinical and environmental isolates of Acanthamoeba spp. <i>Applied and Environmental Microbiology</i> , 2000 , 66, 2613-9	4.8	119
55	QUANTIFICATION OF BIOFILMS IN MULTI-SPECTRAL DIGITAL1 VOLUMES FROM CONFOCAL LASER-SCANNING MICROSCOPES. <i>Image Analysis and Stereology</i> , 2000 , 19, 151	1	8
54	Neochlamydia hartmannellae gen. nov., sp. nov. (Parachlamydiaceae), an endoparasite of the amoeba Hartmannella vermiformis. <i>Microbiology (United Kingdom)</i> , 2000 , 146 (Pt 5), 1231-1239	2.9	123
53	Use of microautoradiography and fluorescent in situ hybridization for characterization of microbial activity in activated sludge. <i>Water Science and Technology</i> , 1999 , 39, 1-9	2.2	14
52	Nitrogen loss in a nitrifying biofilm system. Water Science and Technology, 1999, 39, 13-21	2.2	27
51	Combination of fluorescent in situ hybridization and microautoradiography-a new tool for structure-function analyses in microbial ecology. <i>Applied and Environmental Microbiology</i> , 1999 , 65, 128	39 ⁴ 9 ⁸ 7	547
50	In situ detection of novel bacterial endosymbionts of Acanthamoeba spp. phylogenetically related to members of the order Rickettsiales. <i>Applied and Environmental Microbiology</i> , 1999 , 65, 206-12	4.8	128

49	Diversity of sulfate-reducing bacteria in oxic and anoxic regions of a microbial mat characterized by comparative analysis of dissimilatory sulfite reductase genes. <i>Applied and Environmental Microbiology</i> , 1999 , 65, 4666-71	4.8	157
48	On the occurrence of anoxic microniches, denitrification, and sulfate reduction in aerated activated sludge. <i>Applied and Environmental Microbiology</i> , 1999 , 65, 4189-96	4.8	110
47	Phylogeny and in situ identification of a morphologically conspicuous bacterium, Candidatus Magnospira bakii, present at very low frequency in activated sludge. <i>Environmental Microbiology</i> , 1999 , 1, 125-35	5.2	30
46	Novel bacterial endosymbionts of Acanthamoeba spp. related to the Paramecium caudatum symbiont Caedibacter caryophilus. <i>Environmental Microbiology</i> , 1999 , 1, 357-67	5.2	148
45	The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. <i>Systematic and Applied Microbiology</i> , 1999 , 22, 434-4	4 ⁴ 4. ²	1815
44	Confocal Scanning Laser Microscopy as a Tool for the Determination of 3D Floc Structure. <i>Journal of Colloid and Interface Science</i> , 1999 , 220, 465-467	9.3	21
43	Identification of some of the major groups of bacteria in efficient and nonefficient biological phosphorus removal activated sludge systems. <i>Applied and Environmental Microbiology</i> , 1999 , 65, 4077-	84 8	168
42	Monitoring the community structure of wastewater treatment plants: a comparison of old and new techniques. <i>FEMS Microbiology Ecology</i> , 1998 , 25, 205-215	4.3	100
41	In situ detection of a virulence factor mRNA and 16S rRNA in Listeria monocytogenes. <i>FEMS Microbiology Letters</i> , 1998 , 160, 159-68	2.9	98
40	In situ identification of nocardioform actinomycetes in activated sludge using fluorescent rRNA-targeted oligonucleotide probes. <i>Microbiology (United Kingdom)</i> , 1998 , 144 (Pt 1), 249-259	2.9	70
39	Fluorescence in situ hybridization shows spatial distribution of as yet uncultured treponemes in biopsies from digital dermatitis lesions. <i>Microbiology (United Kingdom)</i> , 1998 , 144 (Pt 9), 2459-2467	2.9	123
38	Combining fluorescent in situ hybridization (fish) with cultivation and mathematical modeling to study population structure and function of ammonia-oxidizing bacteria in activated sludge. <i>Water Science and Technology</i> , 1998 , 37, 441-449	2.2	44
37	Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. <i>Journal of Bacteriology</i> , 1998 , 180, 2975-82	3.5	557
36	Identification and activities in situ of Nitrosospira and Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor. <i>Applied and Environmental Microbiology</i> , 1998 , 64, 3480-5	4.8	384
35	Automated confocal laser scanning microscopy and semiautomated image processing for analysis of biofilms. <i>Applied and Environmental Microbiology</i> , 1998 , 64, 4115-27	4.8	111
34	Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. <i>Applied and Environmental Microbiology</i> , 1998 , 64, 3042-51	4.8	601
33	In Situ Detection and Identification of Bacteria Prior to Their Cultivation. <i>Bioscience and Microflora</i> , 1998 , 17, 15-22		1
32	Variability of type 021N in activated sludge as determined by in situ substrate uptake pattern and in situ hybridization with fluorescent rRNA targeted probes. <i>Water Science and Technology</i> , 1998 , 37, 423-430	2.2	15

31	Population structure of microbial communities associated with two deep, anaerobic, alkaline aquifers. <i>Applied and Environmental Microbiology</i> , 1997 , 63, 1498-504	4.8	78
30	In situ analysis of nitrifying bacteria in sewage treatment plants. <i>Water Science and Technology</i> , 1996 , 34, 237-244	2.2	333
29	In situ visualization of high genetic diversity in a natural microbial community. <i>Journal of Bacteriology</i> , 1996 , 178, 3496-500	3.5	241
28	Characterization of Bacterial Communities from Activated Sludge: Culture-Dependent Numerical Identification Versus In Situ Identification Using Group- and Genus-Specific rRNA-Targeted Oligonucleotide Probes. <i>Microbial Ecology</i> , 1996 , 32, 101-21	4.4	130
27	Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. <i>Applied and Environmental Microbiology</i> , 1996 , 62, 2156-62	4.8	624
26	Die Anwendung von in situ-Hybridisierungssonden zur Aufklung von Struktur und Dynamik der mikrobiellen Bioz Bosen in der Abwasserreinigung 1996 , 93-110		3
25	In situ Identification of Ammonia-oxidizing Bacteria. Systematic and Applied Microbiology, 1995 , 18, 251	I-2∕6 ∌	402
24	The abundance of Zoogloea ramigera in sewage treatment plants. <i>Applied and Environmental Microbiology</i> , 1995 , 61, 702-7	4.8	95
23	Probing Activated Sludge with Fluorescently Labeled rRNA Targeted Oligonucleotides. <i>Water Science and Technology</i> , 1994 , 29, 15-23	2.2	23
22	In situ analysis of microbial consortia in activated sludge using fluorescently labelled, rRNA-targeted oligonucleotide probes and confocal scanning laser microscopy. <i>Journal of Microscopy</i> , 1994 , 176, 181-7	1.9	75
21	In situ characterization of the microbial consortia active in two wastewater treatment plants. <i>Water Research</i> , 1994 , 28, 1715-1723	12.5	157
20	In situ probing of gram-positive bacteria with high DNA G + C content using 23S rRNA-targeted oligonucleotides. <i>Microbiology (United Kingdom)</i> , 1994 , 140 (Pt 10), 2849-58	2.9	463
19	Identification and in situ Detection of Gram-negative Filamentous Bacteria in Activated Sludge. <i>Systematic and Applied Microbiology</i> , 1994 , 17, 405-417	4.2	219
18	Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge. <i>Applied and Environmental Microbiology</i> , 1994 , 60, 792-800	4.8	364
17	Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. <i>Applied and Environmental Microbiology</i> , 1993 , 59, 1520-5	4.8	508
16	Phylogenetic Oligodeoxynucleotide Probes for the Major Subclasses of Proteobacteria: Problems and Solutions. <i>Systematic and Applied Microbiology</i> , 1992 , 15, 593-600	4.2	1628
15	Functional Expression of the Alkane-Inducible Monooxygenase System of the Yeast: Candida tropicalis IN Saccharomyces cerevisiae. <i>Biocatalysis</i> , 1990 , 4, 19-28		7
14	Changes in Plasminogen Activator Activity and Plasmin Inhibition in the Pig During Experimental Hypovolaemia. <i>Thrombosis and Haemostasis</i> , 1985 , 53, 130-133	7	3

LIST OF PUBLICATIONS

13	Molecular strategies for studies of natural populations of sulphate-reducing microorganisms39-116	11
12	Exploring the upper pH limits of nitrite oxidation: diversity, ecophysiology, and adaptive traits of haloalkalitolerant Nitrospira	2
11	Cultivation and genomic analysis of Candidatus Nitrosocaldus islandicus, a novel obligately thermophilic ammonia-oxidizing Thaumarchaeon	1
10	A novel oxidase from Alcaligenes sp. HO-1 oxidizes hydroxylamine to N2	1
9	Anaerobic sulfur oxidation underlies adaptation of a chemosynthetic symbiont to oxic-anoxic interfaces	1
8	Genomic and kinetic analysis of novel Nitrospinae enriched by cell sorting	2
7	Cyanate 🖟 low abundant but actively cycled nitrogen compound in soil	1
6	Machine-assisted cultivation and analysis of biofilms	3
5	Resolving the individual contribution of key microbial populations to enhanced biological phosphorus removal with Raman-FISH	1
4	Characterization of a thaumarchaeal symbiont that drives incomplete nitrification in the tropical spongelanthella basta	1
3	Isotopic-labelling methods for deciphering the function of uncultured micro-organisms1-10	1
2	Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities	3
1	Activated Sludge and Biofilms: Molecular Techniques for Determining Community Composition	3