Swastik Kar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/707501/publications.pdf

Version: 2024-02-01

361413 361022 1,959 37 20 35 h-index citations g-index papers 37 37 37 3895 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tunable Graphene–Silicon Heterojunctions for Ultrasensitive Photodetection. Nano Letters, 2013, 13, 909-916.	9.1	538
2	A roadmap for electronic grade 2D materials. 2D Materials, 2019, 6, 022001.	4.4	205
3	Chemical Vapor Deposition Synthesized Atomically Thin Molybdenum Disulfide with Optoelectronic-Grade Crystalline Quality. ACS Nano, 2015, 9, 8822-8832.	14.6	132
4	Quantum Carrier Reinvestment-Induced Ultrahigh and Broadband Photocurrent Responses in Graphene–Silicon Junctions. ACS Nano, 2014, 8, 10270-10279.	14.6	105
5	Metalâ^'Semiconductor Transition in Single-Walled Carbon Nanotubes Induced by Low-Energy Electron Irradiation. Nano Letters, 2005, 5, 1575-1579.	9.1	87
6	Effect of 1- Pyrene Carboxylic-Acid Functionalization of Graphene on Its Capacitive Energy Storage. Journal of Physical Chemistry C, 2012, 116, 20688-20693.	3.1	85
7	Direct and Scalable Deposition of Atomically Thin Low-Noise MoS ₂ Membranes on Apertures. ACS Nano, 2015, 9, 7352-7359.	14.6	79
8	Protecting the properties of monolayer MoS2 on silicon based substrates with an atomically thin buffer. Scientific Reports, 2016, 6, 20890.	3.3	64
9	Voltage-switchable photocurrents in single-walled carbon nanotube–silicon junctions for analog and digital optoelectronics. Nature Photonics, 2014, 8, 239-243.	31.4	61
10	Graphene–aluminum nitride NEMS resonant infrared detector. Microsystems and Nanoengineering, 2016, 2, 16026.	7.0	60
11	Ultrafast Intrinsic Photoresponse and Direct Evidence of Sub-gap States in Liquid Phase Exfoliated MoS2Thin Films. Scientific Reports, 2015, 5, 11272.	3.3	57
12	Atomically thin layers of B–N–C–O with tunable composition. Science Advances, 2015, 1, e1500094.	10.3	55
13	Wafer-Scale Lateral Self-Assembly of Mosaic Ti ₃ C ₂ T _{<i>x</i>} MXene Monolayer Films. ACS Nano, 2021, 15, 625-636.	14.6	48
14	Twistronics: a turning point in 2D quantum materials. Electronic Structure, 2021, 3, 014004.	2.8	40
15	Tunable and laser-reconfigurable 2D heterocrystals obtained by epitaxial stacking of crystallographically incommensurate Bi ₂ Se ₃ and MoS ₂ atomic Layers dependence of the electronic based and mos subsequence of the electronic based and most subsequence of the	10.3	39
16	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>Mo</mml:mi><mml:msub><mml:m mathvariant="normal">S<mml:mn>2</mml:mn></mml:m </mml:msub></mml:mrow> on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Si</mml:mi><mml:msub><mml:mi< td=""><td>ii 3.2</td><td>35</td></mml:mi<></mml:msub></mml:mrow></mml:math 	ii 3 . 2	35
17	mathvariant="normal">O <mml:mn>2</mml:mn> meas Resonant Raman and Exciton Coupling in High-Quality Single Crystals of Atomically Thin Molybdenum Diselenide Grown by Vapor-Phase Chalcogenization. ACS Nano, 2018, 12, 740-750.	14.6	34
18	Nonlinear Dark-Field Imaging of One-Dimensional Defects in Monolayer Dichalcogenides. Nano Letters, 2020, 20, 284-291.	9.1	34

#	Article	IF	CITATIONS
19	Carbon Nanotubes and Graphene Nanoribbons: Potentials for Nanoscale Electrical Interconnects. Electronics (Switzerland), 2013, 2, 280-314.	3.1	28
20	Charge transfer in crystalline germanium/monolayer MoS ₂ heterostructures prepared by chemical vapor deposition. Nanoscale, 2016, 8, 18675-18681.	5.6	25
21	Evidence of a purely electronic two-dimensional lattice at the interface of TMD/Bi ₂ Se ₃ heterostructures. Nanoscale, 2019, 11, 15929-15938.	5.6	21
22	Oxygen-Induced In Situ Manipulation of the Interlayer Coupling and Exciton Recombination in Bi ₂ Se ₃ /MoS ₂ 2D Heterostructures. ACS Applied Materials & Interfaces, 2019, 11, 15913-15921.	8.0	19
23	Adhesion of graphene sheet on nano-patterned substrates with nano-pillar array. Journal of Applied Physics, 2013, 113, 244303.	2.5	16
24	Organic Photovoltaics with Stacked Graphene Anodes. ACS Applied Energy Materials, 2018, 1, 17-21.	5.1	11
25	Single transistor oscillator based on a Graphene-Aluminum Nitride nano plate resonator. , 2013, , .		9
26	Widely tunable Bi ₂ Se ₃ /transition metal dichalcogenide 2D heterostructures for write-read-erase-reuse applications. 2D Materials, 2019, 6, 041003.	4.4	9
27	Transition Metal Dichalcogenide Thin Films for Precise Optical Wavelength Estimation Using Bayesian Inference. ACS Applied Nano Materials, 2019, 2, 4075-4084.	5.0	9
28	Probing the interlayer interaction between dissimilar 2D heterostructures by <i>in situ</i> rearrangement of their interface. 2D Materials, 2019, 6, 035022.	4.4	9
29	Development of use-specific high-performance cyber-nanomaterial optical detectors by effective choice of machine learning algorithms. Machine Learning: Science and Technology, 2020, 1, 025007.	5.0	9
30	High Performance Graphene-Based Electrochemical Double Layer Capacitors Using 1-Butyl-1-methylpyrrolidinium tris (pentafluoroethyl) trifluorophosphate Ionic Liquid as an Electrolyte. Electronics (Switzerland), 2018, 7, 229.	3.1	8
31	Sculpting carbon bonds for allotropic transformation through solid-state re-engineering of –sp2 carbon. Nature Communications, 2014, 5, 4941.	12.8	7
32	Active Control of Coherent Dynamics in Hybrid Plasmonic MoS ₂ Monolayers with Dressed Phonons. ACS Photonics, 2019, 6, 1645-1655.	6.6	7
33	Quantum Materials Manufacturing. Advanced Materials, 2023, 35, e2109892.	21.0	4
34	Vaporâ€Phaseâ€Gatingâ€Induced Ultrasensitive Ion Detection in Graphene and Singleâ€Walled Carbon Nanotube Networks. Advanced Materials, 2017, 29, 1606883.	21.0	3
35	MoS ₂ Nanosheets with Narrowest Excitonic Line Widths Grown by Flow-Less Direct Heating of Bulk Powders: Implications for Sensing and Detection. ACS Applied Nano Materials, 2021, 4, 2583-2593.	5.0	3
36	In Vivo Partial Restoration of Neural Activity across Severed Mouse Spinal Cord Bridged with Ultralong Carbon Nanotubes. ACS Applied Bio Materials, 2021, 4, 4071-4078.	4.6	3

ARTICLE IF CITATIONS

Chemical sensing based on graphene-aluminum nitride nano plate resonators. , 2015, , .

1