Patrycja Dynarowicz-ÅÄtka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7074974/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modern physicochemical research on Langmuir monolayers. Advances in Colloid and Interface Science, 2001, 91, 221-293.	14.7	307
2	Molecular interaction in mixed monolayers at the air/water interface. Advances in Colloid and Interface Science, 1999, 79, 1-17.	14.7	164
3	Interactions of bioactive molecules & nanomaterials with Langmuir monolayers as cell membrane models. Thin Solid Films, 2015, 593, 158-188.	1.8	114
4	Interactions between phosphatidylcholines and cholesterol in monolayers at the air/water interface. Colloids and Surfaces B: Biointerfaces, 2004, 37, 21-25.	5.0	108
5	Semifluorinated alkanes — Primitive surfactants of fascinating properties. Advances in Colloid and Interface Science, 2008, 138, 63-83.	14.7	59
6	The Impact of Sterol Structure on the Interactions with Sphingomyelin in Mixed Langmuir Monolayers. Journal of Physical Chemistry B, 2008, 112, 11324-11332.	2.6	58
7	Interaction between nystatin and natural membrane lipids in Langmuir monolayers—The role of a phospholipid in the mechanism of polyenes mode of action. Biophysical Chemistry, 2006, 123, 154-161.	2.8	55
8	Mixed Monolayers of Amphotericin Bâ^'Dipalmitoyl Phosphatidyl Choline:Â Study of Complex Formation. Langmuir, 2002, 18, 2817-2827.	3.5	45
9	Study of penetration of amphotericin B into cholesterol or ergosterol containing dipalmitoyl phosphatidylcholine Langmuir monolayers. Colloids and Surfaces B: Biointerfaces, 2003, 27, 249-263.	5.0	44
10	Effect of saturation degree on the interactions between fatty acids and phosphatidylcholines in binary and ternary Langmuir monolayers. Colloids and Surfaces B: Biointerfaces, 2009, 72, 101-111.	5.0	42
11	The influence of phospholipid structure on the interactions with nystatin, a polyene antifungal antibiotic. Chemistry and Physics of Lipids, 2007, 150, 125-135.	3.2	40
12	Cholesterol and phytosterols effect on sphingomyelin/phosphatidylcholine model membranes—Thermodynamic analysis of the interactions in ternary monolayers. Journal of Colloid and Interface Science, 2009, 329, 265-272.	9.4	39
13	Interactions of Alkylphosphocholines with Model Membranes—The Langmuir Monolayer Study. Journal of Membrane Biology, 2013, 246, 453-466.	2.1	33
14	X-ray grazing incidence diffraction and Langmuir monolayer studies of the interaction of β-cyclodextrin with model lipid membranes. Journal of Colloid and Interface Science, 2010, 348, 511-521.	9.4	32
15	Interactions of amphotericin B derivative of low toxicity with biological membrane components—the Langmuir monolayer approach. Biophysical Chemistry, 2005, 116, 77-88.	2.8	31
16	Structural and Topographical Characteristics of Dipalmitoyl Phosphatidic Acid in Langmuir Monolayers. Journal of Colloid and Interface Science, 2002, 249, 388-397.	9.4	30
17	N-(1-Piperidinepropionyl)amphotericin B methyl ester (PAME)— a new derivative of the antifungal antibiotic amphotericin B: Searching for the mechanism of its reduced toxicity. Journal of Colloid and Interface Science, 2005, 287, 476-484.	9.4	30
18	Grazing Incidence Diffraction and X-ray Reflectivity Studies of the Interactions of Inorganic Mercury Salts with Membrane Lipids in Langmuir Monolayers at the Air/Water Interface. Journal of Physical Chemistry B, 2010, 114, 9474-9484.	2.6	29

#	Article	IF	CITATIONS
19	Cyclosporin A distribution in cholesterol-sphingomyelin artificial membranes modeled as Langmuir monolayers. Colloids and Surfaces B: Biointerfaces, 2018, 166, 286-294.	5.0	29
20	Interactions of amphotericin B with saturated and unsaturated phosphatidylcholines at the air/water interface. Colloids and Surfaces B: Biointerfaces, 2003, 29, 205-215.	5.0	28
21	Interactions between an anticancer drug – edelfosine – and cholesterol in Langmuir monolayers. Thin Solid Films, 2008, 516, 8829-8833.	1.8	27
22	Edelfosine disturbs the sphingomyelin–cholesterol model membrane system in a cholesterol-dependent way – The Langmuir monolayer study. Colloids and Surfaces B: Biointerfaces, 2011, 88, 635-640.	5.0	27
23	Effect of edelfosine on tumor and normal cells model membranes—A comparative study. Colloids and Surfaces B: Biointerfaces, 2010, 76, 366-369.	5.0	26
24	Cyclosporin A in Membrane Lipids Environment: Implications for Antimalarial Activity of the Drug—The Langmuir Monolayer Studies. Journal of Membrane Biology, 2015, 248, 1021-1032.	2.1	24
25	Study of perfluorooctyl-n-alkanes monolayers at the air–water interface. Thin Solid Films, 2005, 493, 249-257.	1.8	23
26	Oxysterols Versus Cholesterol in Model Neuronal Membrane. I. The Case of 7-Ketocholesterol. The Langmuir Monolayer Study. Journal of Membrane Biology, 2017, 250, 553-564.	2.1	23
27	Semifluorinated Chains at the Air/Water Interface:Â Studies of the Interaction of a Semifluorinated Alkane with Fluorinated Alcohols in Mixed Langmuir Monolayers. Langmuir, 2006, 22, 2691-2696.	3.5	22
28	Interactions between an anticancer drug – edelfosine – and DPPC in Langmuir monolayers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 321, 201-205.	4.7	22
29	Effects of β-Cyclodextrin on the Structure of Sphingomyelin/Cholesterol Model Membranes. Biophysical Journal, 2010, 99, 1475-1481.	0.5	21
30	Semifluorinated chains in 2D-(perfluorododecyl)-alkanes at the air/water interface. Journal of Colloid and Interface Science, 2004, 279, 552-558.	9.4	20
31	Edelfosine in Membrane Environment - the Langmuir Monolayer Studies. Anti-Cancer Agents in Medicinal Chemistry, 2014, 14, 499-508.	1.7	20
32	Interactions between dialkyldimethylammonium bromides (DXDAB) and sterols—a monolayer study. Journal of Colloid and Interface Science, 2005, 286, 504-510.	9.4	19
33	Behavior of Platelet Activating Factor in Membrane-Mimicking Environment. Langmuir Monolayer Study Complemented with Grazing Incidence X-ray Diffraction and Brewster Angle Microscopy. Journal of Physical Chemistry B, 2012, 116, 10842-10855.	2.6	19
34	Structure of unsaturated fatty acids in 2D system. Colloids and Surfaces B: Biointerfaces, 2017, 158, 634-642.	5.0	19
35	Electrical Properties of Membrane Phospholipids in Langmuir Monolayers. Membranes, 2021, 11, 53.	3.0	19
36	Interactions of a Fluoroaryl Surfactant with Hydrogenated, Partially Fluorinated, and Perfluorinated Surfactants at the Air/Water Interface. Langmuir, 2006, 22, 6622-6628.	3.5	18

#	Article	IF	CITATIONS
37	The influence of plant stanol (β-sitostanol) on inner leaflet of human erythrocytes membrane modeled with the Langmuir monolayer technique. Colloids and Surfaces B: Biointerfaces, 2013, 102, 178-188.	5.0	17
38	Crucial role of the hydroxyl group orientation in Langmuir monolayers organization–The case of 7-hydroxycholesterol epimers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 563, 330-339.	4.7	17
39	Predicting the packing parameter for lipids in monolayers with the use of molecular dynamics. Colloids and Surfaces B: Biointerfaces, 2022, 211, 112298.	5.0	17
40	Two-Dimensional Miscibility StudiesThe Analysis of Interaction between Long-Chain Alcohols and Semifluorinated Alkanes. Journal of Physical Chemistry B, 2006, 110, 3078-3087.	2.6	16
41	Semifluorinated alcohols in Langmuir monolayers—A comparative study. Journal of Colloid and Interface Science, 2006, 301, 315-322.	9.4	16
42	Searching for the role of membrane sphingolipids in selectivity of antitumor ether lipid–edelfosine. Colloids and Surfaces B: Biointerfaces, 2010, 81, 492-497.	5.0	16
43	New look for an old molecule – Solid/solid phase transition in cholesterol monolayers. Chemistry and Physics of Lipids, 2019, 225, 104819.	3.2	16
44	Cholesterol and Cardiolipin Importance in Local Anesthetics–Membrane Interactions: The Langmuir Monolayer Study. Journal of Membrane Biology, 2019, 252, 31-39.	2.1	16
45	Nystatin in Langmuir monolayers at the air/water interface. Colloids and Surfaces B: Biointerfaces, 2006, 53, 64-71.	5.0	15
46	The relationship between the concentration of ganglioside GM1 and antitumor activity of edelfosine—The Langmuir monolayer study. Colloids and Surfaces B: Biointerfaces, 2010, 81, 385-388.	5.0	15
47	Affinity of Alkylphosphocholines to Biological Membrane of Prostate Cancer: Studies in Natural and Model Systems. Journal of Membrane Biology, 2014, 247, 581-589.	2.1	15
48	How unsaturated fatty acids and plant stanols affect sterols plasma level and cellular membranes? Review on model studies involving the Langmuir monolayer technique. Chemistry and Physics of Lipids, 2020, 232, 104968.	3.2	15
49	Unusual Behavior of the Bipolar Molecule 25-Hydroxycholesterol at the Air/Water Interface—Langmuir Monolayer Approach Complemented with Theoretical Calculations. Journal of Physical Chemistry B, 2020, 124, 1104-1114.	2.6	15
50	How does the N-acylation and esterification of amphotericin B molecule affect its interactions with cellular membrane components—the Langmuir monolayer study. Colloids and Surfaces B: Biointerfaces, 2005, 46, 7-19.	5.0	14
51	Nucleation and Growth in the Collapsed Langmuir Monolayers from Semifluorinated Alkanes. Journal of Physical Chemistry B, 2007, 111, 12787-12794.	2.6	14
52	Search for the Molecular Mechanism of Mercury Toxicity. Study of the Mercury(II)â^'Surfactant Complex Formation in Langmuir Monolayers. Journal of Physical Chemistry B, 2009, 113, 4275-4283.	2.6	14
53	Influence of a Spreading Method on the Properties of Amphotericin Bâ^'Dipalmitoyl Phosphatidic Acid Mixed Films at the Air/Water Interface. Langmuir, 2000, 16, 5743-5748.	3.5	13
54	Surface interactions determined by stereostructure on the example of 7-hydroxycholesterol epimers – The Langmuir monolayer study. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 1275-1283.	2.6	13

#	Article	IF	CITATIONS
55	Properties of Langmuir monolayers from semifluorinated alkanes. Applied Surface Science, 2005, 246, 342-347.	6.1	12
56	Critical influence of the alkane length in surface and liquid–crystalline properties of perfluorodecyl-n-alkanes. Journal of Fluorine Chemistry, 2005, 126, 79-86.	1.7	12
57	Branching of the Perfluorinated Chain Influences the Liquid-Crystalline Properties of Semifluorinated Alkanes: Perfluorooctyl- and Perfluoroisononyl-n-Alkanes—a Comparative Study. Molecular Crystals and Liquid Crystals, 2006, 460, 63-74.	0.9	12
58	Comparative Studies on the Influence of β-Sitosterol and Stigmasterol on Model Sphingomyelin Membranes: A Grazing-Incidence X-ray Diffraction Study. Journal of Physical Chemistry B, 2010, 114, 6866-6871.	2.6	12
59	Properties of Î ² -sitostanol/DPPC monolayers studied with Grazing Incidence X-ray Diffraction (GIXD) and Brewster Angle Microscopy. Journal of Colloid and Interface Science, 2011, 364, 133-139.	9.4	12
60	Effects of saturated and polyunsaturated fatty acids on interactions with cholesterol versus 7-ketocholesterol in Langmuir monolayers and their potential biological implications. Colloids and Surfaces B: Biointerfaces, 2019, 174, 189-198.	5.0	12
61	High-resolution label-free studies of molecular distribution and orientation in ultrathin, multicomponent model membranes with infrared nano-spectroscopy AFM-IR. Journal of Colloid and Interface Science, 2019, 542, 347-354.	9.4	12
62	Dipole moments in Langmuir monolayers from aromatic carboxylic acids. Chemical Physics Letters, 2000, 326, 39-44.	2.6	11
63	Gramicidin A Channel in a Matrix from a Semifluorinated Surfactant Monolayer. Journal of Physical Chemistry B, 2006, 110, 19450-19455.	2.6	11
64	The influence of an antitumor lipid – erucylphosphocholine – on artificial lipid raft system modeled as Langmuir monolayer. Molecular Membrane Biology, 2015, 32, 189-197.	2.0	11
65	Influence of 7α-hydroxycholesterol on sphingomyelin and sphingomyelin/phosphatidylcholine films - The Langmuir monolayer study complemented with theoretical calculations. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 861-870.	2.6	11
66	Effect of selected B-ring-substituted oxysterols on artificial model erythrocyte membrane and isolated red blood cells. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183067.	2.6	11
67	Dissociation constants of aromatic carboxylic acids spread at the air/water interface. Thin Solid Films, 2000, 360, 261-267.	1.8	10
68	Langmuir Monolayer Study toward Combined Antileishmanian Therapy Involving Amphotericin B and Edelfosine. Journal of Physical Chemistry B, 2009, 113, 14239-14246.	2.6	10
69	The influence of plant stanol on phospholipids monolayers – The effect of phospholipid structure. Journal of Colloid and Interface Science, 2011, 360, 681-689.	9.4	10
70	Towards the understanding of the behavior of single-chained ether phospholipids in model biomembranes: Interactions with phosphatidylethanolamines in Langmuir monolayers. Colloids and Surfaces B: Biointerfaces, 2012, 97, 162-170.	5.0	10
71	The influence of inorganic ions on the properties of nonionic Langmuir monolayers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 249, 11-14.	4.7	9
72	Miscibility and phase separation in mixed erucylphosphocholine–DPPC monolayers. Colloids and Surfaces B: Biointerfaces, 2013, 107, 43-52.	5.0	9

#	Article	IF	CITATIONS
73	Interactions between single-chained ether phospholipids and sphingomyelin in mixed monolayers at the air/water interface—Grazing incidence X-ray diffraction and Brewster angle microscopy studies. Colloids and Surfaces B: Biointerfaces, 2013, 111, 43-51.	5.0	9
74	Semifluorinated thiols in Langmuir monolayers – A study by nonlinear and linear vibrational spectroscopies. Journal of Colloid and Interface Science, 2015, 460, 290-302.	9.4	9
75	Molecular insight into neurodegeneration – Langmuir monolayer study on the influence of oxysterols on model myelin sheath. Journal of Steroid Biochemistry and Molecular Biology, 2020, 202, 105727.	2.5	9
76	25-hydroxycholesterol interacts differently with lipids of the inner and outer membrane leaflet – The Langmuir monolayer study complemented with theoretical calculations. Journal of Steroid Biochemistry and Molecular Biology, 2021, 211, 105909.	2.5	9
77	Mixed Langmuir monolayers of gramicidin A and fluorinated alcohols. Journal of Colloid and Interface Science, 2007, 313, 600-607.	9.4	8
78	Comparative Characteristics of Membrane-Active Single-Chained Ether Phospholipids: PAF and Lyso-PAF in Langmuir Monolayers. Journal of Physical Chemistry B, 2012, 116, 3155-3163.	2.6	8
79	Externalization of phosphatidylserine from inner to outer layer may alter the effect of plant sterols on human erythrocyte membrane — The Langmuir monolayer studies. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2184-2191.	2.6	8
80	Surface and liquid–crystalline properties of FmHnFm triblock semifluorinated n-alkanes. Materials Science and Engineering C, 2016, 62, 870-878.	7.3	8
81	A study of the interaction between dialkyldimethylammonium bromides and tri-n-octylphosphine oxide (topo) in mixed monolayers at the air/water interface. Journal of Colloid and Interface Science, 2004, 278, 206-214.	9.4	7
82	Interactions between the ganglioside GM1 and hexadecylphosphocholine (miltefosine) in monolayers at the air/water interface. Colloids and Surfaces B: Biointerfaces, 2005, 41, 63-72.	5.0	7
83	Semifluorinated thiols in Langmuir monolayers. Journal of Colloid and Interface Science, 2010, 346, 153-162.	9.4	7
84	Cholesterol as a factor regulating the influence of natural (PAF and lysoPAF) vs synthetic (ED) ether lipids on model lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2700-2708.	2.6	7
85	Perfluorohexyloctane (F6H8) as a delivery agent for cyclosporine A in dry eye syndrome therapy – Langmuir monolayer study complemented with infrared nanospectroscopy. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110564.	5.0	7
86	Study of the collapse mechanism of selected fluorinated surfactants. Journal of Colloid and Interface Science, 2008, 325, 464-471.	9.4	6
87	Partially Fluorinated Thioethers at the Water/Air Interface. Langmuir Monolayer Characterization and X-ray Scattering Studies. Journal of Physical Chemistry B, 2010, 114, 12549-12557.	2.6	6
88	β-Carotene does not form a true Langmuir monolayer at the air/water interface. Colloids and Surfaces B: Biointerfaces, 2012, 90, 244-247.	5.0	6
89	Influence of platelet-activating factor, lyso-platelet-activating factor and edelfosine on Langmuir monolayers imitating plasma membranes of cell lines differing in susceptibility to anti-cancer treatment: the effect of plasmalogen level. Journal of the Royal Society Interface, 2014, 11, 20131103.	3.4	6
90	Mesophases of non-conventional liquid crystalline molecules. Journal of Thermal Analysis and Calorimetry, 2016, 126, 689-697.	3.6	6

#	Article	IF	CITATIONS
91	The Effect of Dextran Sulfate—as Model Glycosaminoglycan Analogue—on Membrane Lipids: DPPC, Cholesterol, and DPPC–Cholesterol Mixture. The Monolayer Study. Journal of Membrane Biology, 2018, 251, 641-651.	2.1	6
92	How the replacement of cholesterol by 25-hydroxycholesterol affects the interactions with sphingolipids: The Langmuir Monolayer Study complemented with theoretical calculations. Journal of the Royal Society Interface, 2021, 18, 20210050.	3.4	6
93	Phase transition beyond the monolayer collapse – The case of stearic acid spread at the air/water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 623, 126781.	4.7	6
94	Interactions between amphotericin B 3-(N',N'-dimethylamino) propyl amide and cellular membrane components in Langmuir monolayers. Thin Solid Films, 2008, 516, 1197-1203.	1.8	5
95	Two-Dimensional Miscibility Studies of Alamethicin and Selected Film-Forming Molecules. Journal of Physical Chemistry B, 2008, 112, 7762-7770.	2.6	5
96	Can oxysterols work in anti-glioblastoma therapy? Model studies complemented with biological experiments. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183773.	2.6	5
97	Different effects of oxysterols on a model lipid raft – Langmuir monolayer study complemented with theoretical calculations. Chemistry and Physics of Lipids, 2022, 244, 105182.	3.2	5
98	Per-6-O-(tert-butyldimethylsilyl)cyclodextrins (TBDMS-CDs) in Langmuir Monolayers:  The Importance of a Spreading Solvent in the Preparation of LB Layers Suitable for Sensor Application. Journal of Physical Chemistry B, 2008, 112, 4620-4628.	2.6	4
99	Antitumor lipids in biomembranes modeled with the Langmuir monolayer technique. Surface Innovations, 2014, 2, 194-200.	2.3	4
100	Langmuir monolayer characteristics of a perfluoroaryl surfactant: 10-Perfluorobenzyl-decan-1-ol (PBD). Journal of Fluorine Chemistry, 2006, 127, 909-915.	1.7	3
101	Synthesis and Langmuir Monolayer Characterisation of Some Nitro Derivatives of Polyphenyl Carboxylic Acids. Journal of Chemical Research, 2009, 2009, 225-228.	1.3	3
102	Synthesis and thermal behavior of triblock semifluorinated n-alkanes. Journal of Thermal Analysis and Calorimetry, 2016, 124, 251-260.	3.6	3
103	Interactions of cholesterol and 7‑ketocholesterol with unsaturated fatty acids of different unsaturation degree – The monolayer study. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 1428-1436.	2.6	3
104	Oxysterols can act antiviral through modification of lipid membrane properties – The Langmuir monolayer study. Journal of Steroid Biochemistry and Molecular Biology, 2022, 220, 106092.	2.5	3
105	Influence of apolar group structure on the properties of Langmuir monolayers of polyphenyl carboxylic acids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 198-200, 141-150.	4.7	1
106	Self-organisation of di(perfluorohexyl)hexane in Langmuir and LB films. Molecular Physics, 2016, 114, 3567-3577.	1.7	1
107	Fluorinated vs hydrogenated surfactants in mixtures with valinomycin—The Langmuir monolayer study. Colloids and Surfaces B: Biointerfaces, 2010, 77, 298-300.	5.0	О