
Dadong Shao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7074709/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly Efficient Enrichment of Radionuclides on Graphene Oxide-Supported Polyaniline. Environmental Science & Technology, 2013, 47, 9904-9910.	4.6	541
2	Mutual Effects of Pb(II) and Humic Acid Adsorption on Multiwalled Carbon Nanotubes/Polyacrylamide Composites from Aqueous Solutions. Environmental Science & Technology, 2011, 45, 3621-3627.	4.6	474
3	Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II). Journal of Hazardous Materials, 2009, 164, 923-928.	6.5	439
4	Adsorption of Ni(II) on oxidized multi-walled carbon nanotubes: Effect of contact time, pH, foreign ions and PAA. Journal of Hazardous Materials, 2009, 166, 109-116.	6.5	394
5	Preconcentration of U(<scp>vi</scp>) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton Transactions, 2012, 41, 6182-6188.	1.6	353
6	Plasma Induced Grafting Carboxymethyl Cellulose on Multiwalled Carbon Nanotubes for the Removal of UO ₂ ²⁺ from Aqueous Solution. Journal of Physical Chemistry B, 2009, 113, 860-864.	1.2	351
7	Application of graphitic carbon nitride for the removal of Pb(II) and aniline from aqueous solutions. Chemical Engineering Journal, 2015, 260, 469-477.	6.6	331
8	Adsorption of copper(II) on multiwalled carbon nanotubes in the absence and presence of humic or fulvic acids. Journal of Hazardous Materials, 2010, 178, 333-340.	6.5	272
9	Plasma-Induced Grafting of Cyclodextrin onto Multiwall Carbon Nanotube/Iron Oxides for Adsorbent Application. Journal of Physical Chemistry B, 2010, 114, 6779-6785.	1.2	267
10	PANI/GO as a super adsorbent for the selective adsorption of uranium(VI). Chemical Engineering Journal, 2014, 255, 604-612.	6.6	267
11	Kinetics and thermodynamics of adsorption of ionizable aromatic compounds from aqueous solutions by as-prepared and oxidized multiwalled carbon nanotubes. Journal of Hazardous Materials, 2010, 178, 505-516.	6.5	247
12	Effect of pH, ionic strength, temperature and humic substances on the sorption of Ni(II) to Na–attapulgite. Chemical Engineering Journal, 2009, 150, 188-195.	6.6	184
13	Removal of Eu(III) from aqueous solution using ZSM-5 zeolite. Microporous and Mesoporous Materials, 2009, 123, 1-9.	2.2	170
14	Polyaniline Multiwalled Carbon Nanotube Magnetic Composite Prepared by Plasma-Induced Graft Technique and Its Application for Removal of Aniline and Phenol. Journal of Physical Chemistry C, 2010, 114, 21524-21530.	1.5	161
15	Graphene oxide/polypyrrole composites for highly selective enrichment of U(<scp>vi</scp>) from aqueous solutions. Polymer Chemistry, 2014, 5, 6207-6215.	1.9	160
16	Plasma-induced grafting of polyacrylamide on graphene oxide nanosheets for simultaneous removal of radionuclides. Physical Chemistry Chemical Physics, 2015, 17, 398-406.	1.3	151
17	Efficient enrichment of uranium(vi) on amidoximated magnetite/graphene oxide composites. RSC Advances, 2013, 3, 18952.	1.7	147
18	Impact of Al ₂ O ₃ on the Aggregation and Deposition of Graphene Oxide. Environmental Science & Technology, 2014, 48, 5493-5500.	4.6	144

#	Article	IF	CITATIONS
19	Removal of 1-naphthylamine from aqueous solution by multiwall carbon nanotubes/iron oxides/cyclodextrin composite. Journal of Hazardous Materials, 2011, 185, 463-471.	6.5	136
20	HF-Free Synthesis of Nanoscale Metal–Organic Framework NMIL-100(Fe) as an Efficient Dye Adsorbent. ACS Sustainable Chemistry and Engineering, 2016, 4, 3368-3378.	3.2	128
21	Removal of polychlorinated biphenyls from aqueous solutions using β-cyclodextrin grafted multiwalled carbon nanotubes. Chemosphere, 2010, 79, 679-685.	4.2	126
22	Plasma Induced Grafting Multiwalled Carbon Nanotube with Chitosan and Its Application for Removal of UO, Cu ²⁺ , and Pb ²⁺ from Aqueous Solutions. Plasma Processes and Polymers, 2010, 7, 977-985.	1.6	121
23	The uptake of radionuclides from aqueous solution by poly(amidoxime) modified reduced graphene oxide. Chemical Engineering Journal, 2014, 254, 623-634.	6.6	112
24	Application of polyaniline and multiwalled carbon nanotube magnetic composites for removal of Pb(II). Chemical Engineering Journal, 2012, 185-186, 144-150.	6.6	105
25	Removal of U(VI) from Aqueous Solution by Amino Functionalized Flake Graphite Prepared by Plasma Treatment. ACS Sustainable Chemistry and Engineering, 2017, 5, 4073-4085.	3.2	102
26	Effect of pH and fulvic acid on sorption and complexation of cobalt onto bare and FA bound MX-80 bentonite. Radiochimica Acta, 2006, 94, .	0.5	92
27	Poly(acrylic acid) grafted multiwall carbon nanotubes by plasma techniques for Co(II) removal from aqueous solution. Chemical Engineering Journal, 2012, 210, 475-481.	6.6	89
28	Synthesis of water-dispersible Fe3O4@β-cyclodextrin by plasma-induced grafting technique for pollutant treatment. Chemical Engineering Journal, 2013, 229, 296-303.	6.6	89
29	Poly(amidoxime)-reduced graphene oxide composites as adsorbents for the enrichment of uranium from seawater. Science China Chemistry, 2014, 57, 1449-1458.	4.2	89
30	Simultaneous removal of uranium and humic acid by cyclodextrin modified graphene oxide nanosheets. Science China Chemistry, 2014, 57, 1291-1299.	4.2	89
31	New Insight into GO, Cadmium(II), Phosphate Interaction and Its Role in GO Colloidal Behavior. Environmental Science & Technology, 2016, 50, 9361-9369.	4.6	85
32	Photocatalytic reduction of Cr(VI) to Cr(III) in solution containing ZnO or ZSM-5 zeolite using oxalate as model organic compound in environment. Microporous and Mesoporous Materials, 2009, 117, 243-248.	2.2	81
33	Immobilization of uranium by biomaterial stabilized FeS nanoparticles: Effects of stabilizer and enrichment mechanism. Journal of Hazardous Materials, 2016, 302, 1-9.	6.5	79
34	Modeling of radionickel sorption on MX-80 bentonite as a function of pH and ionic strength. Science in China Series B: Chemistry, 2009, 52, 362-371.	0.8	71
35	Effect of Silicate on the Formation and Stability of Ni–Al LDH at the γ-Al ₂ O ₃ Surface. Environmental Science & Technology, 2014, 48, 13138-13145.	4.6	68
36	SDBS Modified XCâ€72 Carbon for the Removal of Pb(II) from Aqueous Solutions. Plasma Processes and Polymers, 2010, 7, 552-560.	1.6	65

#	Article	IF	CITATIONS
37	Comparative study of Pb(II) sorption on XC-72 carbon and multi-walled carbon nanotubes from aqueous solutions. Chemical Engineering Journal, 2011, 170, 170-177.	6.6	65
38	Efficient removal of phenol and aniline from aqueous solutions using graphene oxide/polypyrrole composites. Journal of Molecular Liquids, 2015, 203, 80-89.	2.3	63
39	Exploration of the Active Center Structure of Nitrogen-Doped Graphene for Control over the Growth of Co ₃ O ₄ for a High-Performance Supercapacitor. ACS Applied Energy Materials, 2018, 1, 143-153.	2.5	63
40	Polyaniline (PANI) modified bentonite by plasma technique for U(VI) removal from aqueous solution. Applied Surface Science, 2017, 411, 331-337.	3.1	60
41	Synthesis of few-layered graphene by H2O2 plasma etching of graphite. Applied Physics Letters, 2011, 98,	1.5	59
42	Environmental condition effects on radionuclide 64Cu(II) sequestration to a novel composite: polyaniline grafted multiwalled carbon nanotubes. Journal of Radioanalytical and Nuclear Chemistry, 2012, 293, 797-806.	0.7	53
43	Efficient removal of cobalt from aqueous solution using β-cyclodextrin modified graphene oxide. RSC Advances, 2013, 3, 9514-9521.	1.7	51
44	Adsorption of U(VI) on bentonite in simulation environmental conditions. Journal of Molecular Liquids, 2017, 242, 678-684.	2.3	47
45	Phosphate-Functionalized Polyethylene with High Adsorption of Uranium(VI). ACS Omega, 2017, 2, 3267-3275.	1.6	46
46	Preconcentration of Pb2+ from aqueous solution using poly(acrylamide) and poly(N,N-dimethylacrylamide) grafted multiwalled carbon nanotubes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 360, 74-84.	2.3	45
47	Highly efficient entrapment of U(VI) by using porous magnetic Ni 0.6 Fe 2.4 O 4 micro-particles as the adsorbent. Journal of the Taiwan Institute of Chemical Engineers, 2016, 65, 367-377.	2.7	43
48	Removal of 4,4′-dichlorinated biphenyl from aqueous solution using methyl methacrylate grafted multiwalled carbon nanotubes. Chemosphere, 2011, 82, 751-758.	4.2	41
49	Plasma Induced Multiwalled Carbon Nanotube Grafted with 2â€Vinylpyridine for Preconcentration of Pb(II) from Aqueous Solutions. Plasma Processes and Polymers, 2011, 8, 589-598.	1.6	41
50	Uptake of Pb(II) and U(VI) ions from aqueous solutions by the ZSM-5 zeolite. Journal of Molecular Liquids, 2015, 207, 338-342.	2.3	38
51	A review of biopolymer (Poly-β-hydroxybutyrate) synthesis in microbes cultivated on wastewater. Science of the Total Environment, 2021, 756, 143729.	3.9	38
52	Reductive immobilization of uranium by PAAM–FeS/Fe ₃ O ₄ magnetic composites. Environmental Science: Water Research and Technology, 2015, 1, 169-176.	1.2	36
53	Rapid fabrication and phase transition of Nd and Ce co-doped Gd2Zr2O7 ceramics by SPS. Journal of the European Ceramic Society, 2018, 38, 2863-2870.	2.8	33
54	Rapid solidification of Sr-contaminated soil by consecutive microwave sintering: mechanism and stability evaluation. Journal of Hazardous Materials, 2021, 407, 124761.	6.5	33

#	Article	IF	CITATIONS
55	Design of Chitosan-Grafted Carbon Nanotubes: Evaluation of How the –OH Functional Group Affects Cs+ Adsorption. Marine Drugs, 2015, 13, 3116-3131.	2.2	32
56	Spectroscopic Investigation of Enhanced Adsorption of U(VI) and Eu(III) on Magnetic Attapulgite in Binary System. Industrial & Engineering Chemistry Research, 2018, 57, 7533-7543.	1.8	32
57	Radiation stability of Gd2Zr2O7 and Nd2Ce2O7 ceramics as nuclear waste forms. Ceramics International, 2018, 44, 760-765.	2.3	30
58	Polyamidoxime functionalized with phosphate groups by plasma technique for effective U(VI) adsorption. Journal of Industrial and Engineering Chemistry, 2018, 67, 380-387.	2.9	27
59	Controlled synthesized natroalunite microtubes applied for cadmium(II) and phosphate co–removal. Journal of Hazardous Materials, 2016, 314, 249-259.	6.5	26
60	Irradiation response of Nd2Zr2O7 under heavy ions irradiation. Journal of the European Ceramic Society, 2018, 38, 2068-2073.	2.8	26
61	Zero valent iron/poly(amidoxime) adsorbent for the separation and reduction of U(<scp>vi</scp>). RSC Advances, 2016, 6, 52076-52081.	1.7	24
62	Exploring the Sorption Mechanism of Ni(II) on Illite: Batch Sorption, Modelling, EXAFS and Extraction Investigations. Scientific Reports, 2017, 7, 8495.	1.6	24
63	Harvesting the vibration energy of α-MnO2 nanostructures for complete catalytic oxidation of carcinogenic airborne formaldehyde at ambient temperature. Chemosphere, 2020, 261, 127778.	4.2	23
64	Localized in situ polymerization on carbon nanotube surfaces for stabilized carbon nanotube dispersions and application for cobalt(ii) removal. RSC Advances, 2014, 4, 4856.	1.7	22
65	Rapid immobilization of complex simulated radionuclides by as-prepared Gd2Zr2O7 ceramics without structural design. Journal of Nuclear Materials, 2019, 526, 151782.	1.3	22
66	Facile synthesis of gelatin modified attapulgite for the uptake of uranium from aqueous solution. Journal of Molecular Liquids, 2017, 234, 172-178.	2.3	21
67	Heavy-ion irradiation effects on Gd2Zr2O7 ceramics bearing complex nuclear waste. Journal of Alloys and Compounds, 2019, 771, 973-979.	2.8	21
68	Microstructure evolution of rapidly fabricated Gd2-Nd Zr2O7 (0.0 ≤ ≤2.0) by spark plasma sintering. Ceramics International, 2018, 44, 2458-2462.	2.3	17
69	Transformation details of poly(acrylonitrile) to poly(amidoxime) during the amidoximation process. RSC Advances, 2021, 11, 1909-1915.	1.7	17
70	Poly(amidoxime) functionalized MoS2 for efficient adsorption of uranium(VI) in aqueous solutions. Journal of Radioanalytical and Nuclear Chemistry, 2019, 319, 379-386.	0.7	16
71	Retention of Pb(II) by a Low-Cost Magnetic Composite Prepared by Environmentally-Friendly Plasma Technique. Separation Science and Technology, 2013, 48, 1211-1219.	1.3	14
72	Functionally reduced graphene oxide supported iron oxides composites as an adsorbent for the immobilization of uranium ions from aqueous solutions. Journal of Molecular Liquids, 2017, 240, 578-588.	2.3	14

#	Article	IF	CITATIONS
73	Sorption of Nickel(II) on a Calcareous Aridisol Soil, China: Batch, XPS, and EXAFS Spectroscopic Investigations. Scientific Reports, 2017, 7, 46744.	1.6	13
74	Heavy-ion irradiation effects on U3O8 incorporated Gd2Zr2O7 waste forms. Journal of Hazardous Materials, 2018, 357, 424-430.	6.5	13
75	Rapid vitrification of simulated Sr2+ radioactive contaminated soil for nuclear emergencies. Journal of Radioanalytical and Nuclear Chemistry, 2019, 319, 115-121.	0.7	13
76	A carboxymethyl cellulose modified magnetic bentonite composite for efficient enrichment of radionuclides. RSC Advances, 2016, 6, 65136-65145.	1.7	12
77	Chemical behavior of uranium contaminated soil solidified by microwave sintering. Journal of Radioanalytical and Nuclear Chemistry, 2019, 322, 2109-2117.	0.7	12
78	XPS investigation of impurities containing boron films affected by energetic deuterium implantation and thermal desorption. Journal of Nuclear Materials, 2015, 457, 118-123.	1.3	11
79	Helium ion irradiation effects on neodymium and cerium co-doped Gd 2 Zr 2 O 7 pyrochlore ceramic. Journal of Rare Earths, 2018, 36, 398-403.	2.5	9
80	Removal of U(VI) from aqueous solution using carboxymethyl cellulose-modified Ca-rectorite hybrid composites. Korean Journal of Chemical Engineering, 2020, 37, 776-783.	1.2	8
81	Formation of C ₆₀ fullerene-bonded-CNTs using radio frequency plasma. RSC Advances, 2017, 7, 21124-21127.	1.7	7
82	Effects of alpha irradiation on Nd2Zr2O7 matrix for nuclear waste forms. Journal of the Australian Ceramic Society, 2018, 54, 33-38.	1.1	6
83	Ab initio calculation of mechanical and thermodynamic properties of Gd2Zr2O7 pyrochlore. Materials Chemistry and Physics, 2020, 243, 122565.	2.0	6
84	Alpha-radiation effects of Gd2Zr2O7 bearing simulated multi-nuclides. Journal of the Australian Ceramic Society, 2019, 55, 831-836.	1.1	5
85	Application of poly(vinylphosphonic acid) modified poly(amidoxime) in uptake of uranium from seawater. RSC Advances, 2022, 12, 4054-4060.	1.7	5
86	Photocatalytic Elimination of Cr(VI) in Aqueous Solution by Using ZSM-5 Zeolite as Catalyst and Urea as Coexisting Organic Contaminants. Nano LIFE, 2015, 05, 1542001.	0.6	2
87	Helium ions' irradiation effects on Gd2Zr2O7 ceramics holding complex simulated radionuclides. Journal of Radioanalytical and Nuclear Chemistry, 2017, 314, 2113-2122.	0.7	2
88	Effects of heavy-ion irradiation on Gd2Zr2O7 bearing simulated TRPO waste. Ceramics International, 2018, 44, 14020-14025.	2.3	2
89	Application of poly(amidoxime)/scrap facemasks in extraction of uranium from seawater: from dangerous waste to nuclear power. Journal of Radioanalytical and Nuclear Chemistry, 0, , .	0.7	2