
Amir Sammak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7074176/publications.pdf Version: 2024-02-01

ANID SAMMAR

#	Article	IF	CITATIONS
1	Fast universal quantum gate above the fault-tolerance threshold in silicon. Nature, 2022, 601, 338-342.	27.8	190
2	Quantum logic with spin qubits crossing the surface code threshold. Nature, 2022, 601, 343-347.	27.8	199
3	Lightly strained germanium quantum wells with hole mobility exceeding one million. Applied Physics Letters, 2022, 120, .	3.3	22
4	Coherent Spin-Spin Coupling Mediated by Virtual Microwave Photons. Physical Review X, 2022, 12, .	8.9	38
5	Wafer-scale low-disorder 2DEG in 28Si/SiGe without an epitaxial Si cap. Applied Physics Letters, 2022, 120, .	3.3	7
6	Low percolation density and charge noise with holes in germanium. Materials for Quantum Technology, 2021, 1, 011002.	3.1	31
7	A two-dimensional array of single-hole quantum dots. Applied Physics Letters, 2021, 118, .	3.3	26
8	A four-qubit germanium quantum processor. Nature, 2021, 591, 580-585.	27.8	213
9	Enhancement of proximity-induced superconductivity in a planar Ge hole gas. Physical Review Research, 2021, 3, .	3.6	23
10	CMOS-based cryogenic control of silicon quantum circuits. Nature, 2021, 593, 205-210.	27.8	136
11	Single-hole pump in germanium. Journal Physics D: Applied Physics, 2021, 54, 434001.	2.8	2
12	On-chip integration of Si/SiGe-based quantum dots and switched-capacitor circuits. Applied Physics Letters, 2020, 117, .	3.3	8
13	A single-hole spin qubit. Nature Communications, 2020, 11, 3478.	12.8	104
14	Effect of Quantum Hall Edge Strips on Valley Splitting in Silicon Quantum Wells. Physical Review Letters, 2020, 125, 186801.	7.8	10
15	Vanishing Zeeman energy in a two-dimensional hole gas. Physical Review B, 2020, 102, .	3.2	5
16	Spin Relaxation Benchmarks and Individual Qubit Addressability for Holes in Quantum Dots. Nano Letters, 2020, 20, 7237-7242.	9.1	29
17	On-Chip Microwave Filters for High-Impedance Resonators with Gate-Defined Quantum Dots. Physical Review Applied, 2020, 14, .	3.8	19
18	Multiplexed quantum transport using commercial off-the-shelf CMOS at sub-kelvin temperatures. Npj Quantum Information, 2020, 6, .	6.7	22

AMIR SAMMAK

#	Article	IF	CITATIONS
19	Quantum dot arrays in silicon and germanium. Applied Physics Letters, 2020, 116, .	3.3	82
20	Fast two-qubit logic with holes in germanium. Nature, 2020, 577, 487-491.	27.8	181
21	19.1 A Scalable Cryo-CMOS 2-to-20GHz Digitally Intensive Controller for 4×32 Frequency Multiplexed Spin Qubits/Transmons in 22nm FinFET Technology for Quantum Computers. , 2020, , .		47
22	Light effective hole mass in undoped Ge/SiGe quantum wells. Physical Review B, 2019, 100, .	3.2	47
23	Rapid gate-based spin read-out in silicon using an on-chip resonator. Nature Nanotechnology, 2019, 14, 742-746.	31.5	112
24	Shallow and Undoped Germanium Quantum Wells: A Playground for Spin and Hybrid Quantum Technology. Advanced Functional Materials, 2019, 29, 1807613.	14.9	81
25	Ballistic supercurrent discretization and micrometer-long Josephson coupling in germanium. Physical Review B, 2019, 99, .	3.2	22
26	Germanium Quantum-Well Josephson Field-Effect Transistors and Interferometers. Nano Letters, 2019, 19, 1023-1027.	9.1	44
27	Embedding Silicon Spin Qubits in Superconducting Circuits. , 2019, , .		Ο
28	Strong spin-photon coupling in silicon. Science, 2018, 359, 1123-1127.	12.6	278
29	Gate-controlled quantum dots and superconductivity in planar germanium. Nature Communications, 2018, 9, 2835.	12.8	101
30	A Highâ€Mobility Hole Bilayer in a Germanium Double Quantum Well. Advanced Quantum Technologies, 0, , 2100167.	3.9	3