Amir Sammak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7074176/publications.pdf

Version: 2024-02-01

30 2,082 21 27 papers citations h-index g-index

30 30 30 1222 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Strong spin-photon coupling in silicon. Science, 2018, 359, 1123-1127.	12.6	278
2	A four-qubit germanium quantum processor. Nature, 2021, 591, 580-585.	27.8	213
3	Quantum logic with spin qubits crossing the surface code threshold. Nature, 2022, 601, 343-347.	27.8	199
4	Fast universal quantum gate above the fault-tolerance threshold in silicon. Nature, 2022, 601, 338-342.	27.8	190
5	Fast two-qubit logic with holes in germanium. Nature, 2020, 577, 487-491.	27.8	181
6	CMOS-based cryogenic control of silicon quantum circuits. Nature, 2021, 593, 205-210.	27.8	136
7	Rapid gate-based spin read-out in silicon using an on-chip resonator. Nature Nanotechnology, 2019, 14, 742-746.	31.5	112
8	A single-hole spin qubit. Nature Communications, 2020, 11, 3478.	12.8	104
9	Gate-controlled quantum dots and superconductivity in planar germanium. Nature Communications, 2018, 9, 2835.	12.8	101
10	Quantum dot arrays in silicon and germanium. Applied Physics Letters, 2020, 116, .	3.3	82
11	Shallow and Undoped Germanium Quantum Wells: A Playground for Spin and Hybrid Quantum Technology. Advanced Functional Materials, 2019, 29, 1807613.	14.9	81
12	Light effective hole mass in undoped Ge/SiGe quantum wells. Physical Review B, 2019, 100, .	3.2	47
13	19.1 A Scalable Cryo-CMOS 2-to-20GHz Digitally Intensive Controller for 4Å—32 Frequency Multiplexed Spin Qubits/Transmons in 22nm FinFET Technology for Quantum Computers. , 2020, , .		47
14	Germanium Quantum-Well Josephson Field-Effect Transistors and Interferometers. Nano Letters, 2019, 19, 1023-1027.	9.1	44
15	Coherent Spin-Spin Coupling Mediated by Virtual Microwave Photons. Physical Review X, 2022, 12, .	8.9	38
16	Low percolation density and charge noise with holes in germanium. Materials for Quantum Technology, 2021, 1, 011002.	3.1	31
17	Spin Relaxation Benchmarks and Individual Qubit Addressability for Holes in Quantum Dots. Nano Letters, 2020, 20, 7237-7242.	9.1	29
18	A two-dimensional array of single-hole quantum dots. Applied Physics Letters, 2021, 118, .	3.3	26

#	Article	IF	CITATION
19	Enhancement of proximity-induced superconductivity in a planar Ge hole gas. Physical Review Research, 2021, 3, .	3.6	23
20	Ballistic supercurrent discretization and micrometer-long Josephson coupling in germanium. Physical Review B, 2019, 99, .	3.2	22
21	Multiplexed quantum transport using commercial off-the-shelf CMOS at sub-kelvin temperatures. Npj Quantum Information, 2020, 6, .	6.7	22
22	Lightly strained germanium quantum wells with hole mobility exceeding one million. Applied Physics Letters, 2022, 120, .	3.3	22
23	On-Chip Microwave Filters for High-Impedance Resonators with Gate-Defined Quantum Dots. Physical Review Applied, 2020, 14, .	3.8	19
24	Effect of Quantum Hall Edge Strips on Valley Splitting in Silicon Quantum Wells. Physical Review Letters, 2020, 125, 186801.	7.8	10
25	On-chip integration of Si/SiGe-based quantum dots and switched-capacitor circuits. Applied Physics Letters, 2020, 117, .	3.3	8
26	Wafer-scale low-disorder 2DEG in 28Si/SiGe without an epitaxial Si cap. Applied Physics Letters, 2022, 120, .	3.3	7
27	Vanishing Zeeman energy in a two-dimensional hole gas. Physical Review B, 2020, 102, .	3.2	5
28	A Highâ€Mobility Hole Bilayer in a Germanium Double Quantum Well. Advanced Quantum Technologies, 0, , 2100167.	3.9	3
29	Single-hole pump in germanium. Journal Physics D: Applied Physics, 2021, 54, 434001.	2.8	2
30	Embedding Silicon Spin Qubits in Superconducting Circuits. , 2019, , .		0