Anna Bezryadina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7074003/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nonlinear self-trapping and guiding of light at different wavelengths with sheep blood. Optics Letters, 2021, 46, 629.	1.7	10
2	TGFβ1 single-nucleotide polymorphism C-509T alters mucosal cell function in pediatric eosinophilic esophagitis. Mucosal Immunology, 2020, 13, 110-117.	2.7	13
3	Nonlinear optical response and self-trapping of light in biological suspensions. Advances in Physics: X, 2020, 5, 1778526.	1.5	11
4	Light-induced biological waveguides. , 2020, , .		1
5	Self-guiding and Coupling of Light through Suspensions of Sheep Red Blood Cells. , 2020, , .		0
6	Optical force-induced nonlinearity and self-guiding of light in human red blood cell suspensions. Light: Science and Applications, 2019, 8, 31.	7.7	49
7	Manipulation and Assessment of Human Red Blood Cells with Tunable "Tug-of-War―Optical Tweezers. Physical Review Applied, 2019, 12, .	1.5	23
8	Localized plasmonic structured illumination microscopy with gaps in spatial frequencies. Optics Letters, 2019, 44, 2915.	1.7	14
9	Waveguides of Light through Red Blood Cells. , 2019, , .		0
10	Red blood cells form waveguides of light at tunable wavelengths (Conference Presentation). , 2019, , .		0
11	Stretching and characterization of human red blood cells with tunable "tug-of-war―optical tweezers (Conference Presentation). , 2019, , .		0
12	High Spatiotemporal Resolution Imaging with Localized Plasmonic Structured Illumination Microscopy. ACS Nano, 2018, 12, 8248-8254.	7.3	45
13	Experimental Demonstration of Localized Plasmonic Structured Illumination Microscopy. ACS Nano, 2017, 11, 5344-5350.	7.3	76
14	Nonlinear Self-Action of Light through Biological Suspensions. Physical Review Letters, 2017, 119, 058101.	2.9	52
15	Localized plasmonic structured illumination microscopy with an optically trapped microlens. Nanoscale, 2017, 9, 14907-14912.	2.8	47
16	Optical tug-of-war tweezers: shaping light for dynamic control of bacterial cells (Invited Paper). Chinese Optics Letters, 2017, 15, 030010-30013.	1.3	11
17	Deep penetration of light through suspensions of red blood cells. , 2017, , .		0
18	High-Speed Super-Resolution Microscopy for Biological Imaging. , 2017, , .		0

Anna Bezryadina

#	Article	IF	CITATIONS
19	Optical disassembly of cellular clusters by tunable â€~tug-of-war' tweezers. Light: Science and Applications, 2016, 5, e16158-e16158.	7.7	47
20	Guiding and nonlinear coupling of light in plasmonic nanosuspensions. Optics Letters, 2016, 41, 3817.	1.7	35
21	Guiding and Coupling Light through Nonlinear Plasmonic Nanosuspensions. , 2016, , .		0
22	Self-trapping of light through red blood cell suspensions. , 2016, , .		0
23	Guiding light by plasmonic resonant solitons in metallic nanosuspensions (Presentation Recording). , 2015, , .		Ο
24	Optical manipulation of rod-shaped bacteria and adhesive cellular clusters with novel "tug-of-war― optical tweezers. , 2014, , .		0
25	Optical trapping and manipulation of multi-pronged bacteria. , 2013, , .		Ο
26	Mid-gap trap states in CdTe nanoparticle solar cells. Applied Physics Letters, 2012, 100, 013508.	1.5	15
27	Pulsed chemical vapor deposition of Cu2S into a porous TiO2 matrix. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2011, 29, .	0.9	14
28	New high optical band gap window p layer contact development. , 2011, , .		0
29	Air stability of TiO2/PbS colloidal nanoparticle solar cells and its impact on power efficiency. Applied Physics Letters, 2011, 99, 063512.	1.5	29
30	Self-trapping and stabilization of doubly-charged optical vortices in two-dimensional photonic lattices. Journal of Modern Optics, 2010, 57, 1377-1387.	0.6	1
31	Understanding Degradation of Doped Electroluminescent ZnS Phosphors. Materials Research Society Symposia Proceedings, 2008, 1083, 60601.	0.1	1
32	OBSERVATION OF ONE- AND TWO-DIMENSIONAL DISCRETE SURFACE SPATIAL SOLITONS. Journal of Nonlinear Optical Physics and Materials, 2007, 16, 401-426.	1.1	35
33	Observation of Two-Dimensional Surface Solitons. Physical Review Letters, 2007, 98, 123903.	2.9	154
34	Observation of two-dimensional discrete surface solitons and surface gap solitons. , 2007, , .		0
35	Two-Dimensional Surface Lattice Solitons. Optics and Photonics News, 2007, 18, 42.	0.4	0
36	Self-trapping and flipping of double-charged vortices in optically induced photonic lattices. Optics Letters, 2006, 31, 2456.	1.7	55

Anna Bezryadina

#	Article	IF	CITATIONS
37	Observation of topological transformations of optical vortices in two-dimensional photonic lattices. Optics Express, 2006, 14, 8317.	1.7	43
38	Observation of topological transformations of vortices in two-dimensional lattices. , 2006, , .		1
39	Self-trapping of charge-2 vortices in optically induced photonic lattices. , 2006, , .		0
40	Experiments on Gaussian beams and vortices in optically induced photonic lattices. Journal of the Optical Society of America B: Optical Physics, 2005, 22, 1395.	0.9	36
41	Optical vortices in optically-induced photonic lattices. , 2005, , .		0
42	Anisotropic Enhancement of Discrete Diffraction and Formation of Two-Dimensional Discrete-Soliton Trains. Physical Review Letters, 2004, 92, 143902.	2.9	94
43	Dipole and Quadrupole Solitons in Optically Induced Two-Dimensional Photonic Lattices: Theory and Experiment. Studies in Applied Mathematics, 2004, 113, 389-412.	1.1	98
44	Observation of two-dimensional lattice vector solitons. Optics Letters, 2004, 29, 1656.	1.7	77
45	Dipole solitons in optically induced two-dimensional photonic lattices. Optics Letters, 2004, 29, 1662.	1.7	117