
Fabricio Cassan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7073755/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Applied Microbiology and Biotechnology, 2004, 65, 497-503.	1.7	415
2	Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Applied Microbiology and Biotechnology, 2009, 85, 371-381.	1.7	347
3	Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max) Tj ETQq1 2	LOL7484314	4 ngn⊠ /Over
4	Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation. Applied Microbiology and Biotechnology, 2007, 75, 1143-1150.	1.7	271
5	Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Applied Microbiology and Biotechnology, 2007, 74, 874-880.	1.7	251
6	Physiological and Agronomical Aspects of Phytohormone Production by Model Plant-Growth-Promoting Rhizobacteria (PGPR) Belonging to the Genus Azospirillum. Journal of Plant Growth Regulation, 2014, 33, 440-459.	2.8	248
7	Azospirillum sp. in current agriculture: From the laboratory to the field. Soil Biology and Biochemistry, 2016, 103, 117-130.	4.2	234
8	Cadaverine production by Azospirillum brasilense and its possible role in plant growth promotion and osmotic stress mitigation. European Journal of Soil Biology, 2009, 45, 12-19.	1.4	183
9	Everything you must know about Azospirillum and its impact on agriculture and beyond. Biology and Fertility of Soils, 2020, 56, 461-479.	2.3	138
10	Azospirillum sp. Promotes Root Hair Development in Tomato Plants through a Mechanism that Involves Ethylene. Journal of Plant Growth Regulation, 2006, 25, 175-185.	2.8	106
11	Current opinion and perspectives on the methods for tracking and monitoring plant growth‒promoting bacteria. Soil Biology and Biochemistry, 2019, 130, 205-219.	4.2	102
12	Azospirillum brasilense and Azospirillum lipoferum Hydrolyze Conjugates of GA20 and Metabolize the Resultant Aglycones to GA1 in Seedlings of Rice Dwarf Mutants. Plant Physiology, 2001, 125, 2053-2058.	2.3	85
13	Production of phytohormones by root-associated saprophytic actinomycetes isolated from the actinorhizal plant Ochetophila trinervis. World Journal of Microbiology and Biotechnology, 2011, 27, 2195-2202.	1.7	64
14	Genome-based reclassification of Azospirillum brasilense Sp245 as the type strain of Azospirillum baldaniorum sp. nov. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 6203-6212.	0.8	58
15	Azospirillum spp. metabolize[17,17-2H2]gibberellin A20 to[17,17-2H2]gibberellin A1 in vivo in dy rice mutant seedlings. Plant and Cell Physiology, 2001, 42, 763-767.	1.5	44
16	Regulation of IAA Biosynthesis in Azospirillum brasilense Under Environmental Stress Conditions. Current Microbiology, 2018, 75, 1408-1418.	1.0	42
17	Complete Genome Sequence of the Model Rhizosphere Strain Azospirillum brasilense Az39, Successfully Applied in Agriculture. Genome Announcements, 2014, 2, .	0.8	39
18	The benefits of foliar inoculation with Azospirillum brasilense in soybean are explained by an auxin signaling model. Symbiosis, 2018, 76, 41-49.	1.2	35

FABRICIO CASSAN

#	Article	IF	CITATIONS
19	New insights into auxin metabolism in Bradyrhizobium japonicum. Research in Microbiology, 2018, 169, 313-323.	1.0	31
20	Improvement of soybean grain nutritional quality under foliar inoculation with Azospirillum brasilense strain Az39. Symbiosis, 2019, 77, 41-47.	1.2	27
21	Analysis of the denitrification pathway and greenhouse gases emissions in <i>Bradyrhizobium</i> sp. strains used as biofertilizers in South America. Journal of Applied Microbiology, 2019, 127, 739-749.	1.4	27
22	Genome Sequence of Bradyrhizobium japonicum E109, One of the Most Agronomically Used Nitrogen-Fixing Rhizobacteria in Argentina. Genome Announcements, 2015, 3, .	0.8	26
23	New insights into indole-3-acetic acid metabolism in <i>Azospirillum brasilense</i> . Journal of Applied Microbiology, 2018, 125, 1774-1785.	1.4	20
24	The <scp><i>Azospirillum brasilense</i></scp> type <scp>VI</scp> secretion system promotes cell aggregation, biocontrol protection against phytopathogens and attachment to the microalgae <scp><i>Chlorella sorokiniana</i></scp> . Environmental Microbiology, 2021, 23, 6257-6274.	1.8	20
25	A simple method to evaluate the number of bradyrhizobia on soybean seeds and its implication on inoculant quality control. AMB Express, 2011, 1, 21.	1.4	18
26	Genotypic Characterization of Azotobacteria Isolated from Argentinean Soils and Plant-Growth-Promoting Traits of Selected Strains with Prospects for Biofertilizer Production. Scientific World Journal, The, 2013, 2013, 1-12.	0.8	18
27	Phytohormones and Other Plant Growth Regulators Produced by PGPR: The Genus Azospirillum. , 2015, , 115-138.		18
28	The importance of denitrification performed by nitrogen-fixing bacteria used as inoculants in South America. Plant and Soil, 2020, 451, 5-24.	1.8	17
29	Azospirillum as Biofertilizer for Sustainable Agriculture: Azospirillum brasilense AZ39 as a Model of PGPR and Field Traceability. Sustainability in Plant and Crop Protection, 2019, , 45-70.	0.2	14
30	<i>Azospirillum brasilense</i> Az39, a model rhizobacterium with <scp>AHL</scp> <i>quorumâ€quenching</i> capacity. Journal of Applied Microbiology, 2019, 126, 1850-1860.	1.4	11
31	Production and function of jasmonates in nodulated roots of soybean plants inoculated with Bradyrhizobium japonicum. Archives of Microbiology, 2012, 194, 837-845.	1.0	10
32	Basic and Technological Aspects of Phytohormone Production by Microorganisms: Azospirillum sp. as a Model of Plant Growth Promoting Rhizobacteria. , 2011, , 141-182.		9
33	Molecular and physiological analysis of indole-3-acetic acid degradation in Bradyrhizobium japonicum E109. Research in Microbiology, 2021, 172, 103814.	1.0	9
34	Modulation of Maize Rhizosphere Microbiota Composition by Inoculation with Azospirillum argentinense Az39 (Formerly A. brasilense Az39). Journal of Soil Science and Plant Nutrition, 2022, 22, 3553-3567.	1.7	8
35	Current Research on Plant-Growth Promoting Rhizobacteria in Latin America: Meeting Report from the 2nd Latin American PGPR Workshop. Journal of Plant Growth Regulation, 2015, 34, 215-219.	2.8	6
36	Evaluation of nitrous oxide emission by soybean inoculated with Bradyrhizobium strains commonly used as inoculants in South America. Plant and Soil, 2022, 472, 311-328.	1.8	6

FABRICIO CASSAN

#	Article	IF	CITATIONS
37	The American Halophyte Prosopis strombulifera, a New Potential Source to Confer Salt Tolerance to Crops. , 2012, , 115-143.		5
38	Day and blue light modify growth, cell physiology and indoleâ€3â€acetic acid production of Azospirillum brasilense Az39 under planktonic growth conditions. Journal of Applied Microbiology, 2021, 130, 1671-1683.	1.4	5
39	Evaluation of growth and motility in non-photosynthetic Azospirillum brasilense exposed to red, blue, and white light. Archives of Microbiology, 2020, 202, 1193-1201.	1.0	4
40	What Do We Know About the Publications Related with Azospirillum? A Metadata Analysis. Microbial Ecology, 2021, 81, 278-281.	1.4	4
41	Localization and survival of <i>Azospirillum brasilense</i> Az39 in soybean leaves. Letters in Applied Microbiology, 2021, 72, 626-633.	1.0	4
42	The Contribution of the Use of Azospirillum sp. in Sustainable Agriculture: Learnings from the Laboratory to the Field. , 2016, , 293-321.		2
43	The drop plate method as an alternative for Azospirillum spp viable cell enumeration within the consensus protocol of the REDCAI network. Revista Argentina De Microbiologia, 2021, , .	0.4	1