
Songchao Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7073604/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In vitro degradability, bioactivity and cell responses to mesoporous magnesium silicate for the induction of bone regeneration. Colloids and Surfaces B: Biointerfaces, 2014, 120, 38-46.	5.0	58
2	Silkâ€Inspired βâ€Peptide Materials Resist Fouling and the Foreignâ€Body Response. Angewandte Chemie - International Edition, 2020, 59, 9586-9593.	13.8	56
3	Osseointegration of nanohydroxyapatite- or nano-calcium silicate-incorporated polyetheretherketone bioactive composites in vivo. International Journal of Nanomedicine, 2016, Volume 11, 6023-6033.	6.7	44
4	Influences of mesoporous zinc-calcium silicate on water absorption, degradability, antibacterial efficacy, hemostatic performances and cell viability to microporous starch based hemostat. Materials Science and Engineering C, 2017, 76, 340-349.	7.3	42
5	Stimulation of cell responses and bone ingrowth into macro-microporous implants of nano-bioglass/polyetheretherketone composite and enhanced antibacterial activity by release of hinokitiol. Colloids and Surfaces B: Biointerfaces, 2018, 164, 347-357.	5.0	40
6	Effects of processing route on morphology and mechanical behavior of polypropylene in equal channel angular extrusion. Journal of Applied Polymer Science, 2011, 122, 2146-2158.	2.6	27
7	<i>In vitro</i> degradability, bioactivity and primary cell responses to bone cements containing mesoporous magnesium–calcium silicate and calcium sulfate for bone regeneration. Journal of the Royal Society Interface, 2015, 12, 20150779.	3.4	24
8	Lithium doped silica nanospheres/poly(dopamine) composite coating on polyetheretherketone to stimulate cell responses, improve bone formation and osseointegration. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 965-976.	3.3	23
9	Thermal and phase-separation behavior of injection-molded poly(l-lactic acid)/poly(d-lactic acid) blends with moderate optical purity. Polymer Bulletin, 2012, 68, 1135-1151.	3.3	21
10	A microporous surface containing Si3N4/Ta microparticles of PEKK exhibits both antibacterial and osteogenic activity for inducing cellular response and improving osseointegration. Bioactive Materials, 2021, 6, 3136-3149.	15.6	21
11	Incorporation of molybdenum disulfide into polyetheretherketone creating biocomposites with improved mechanical, tribological performances and cytocompatibility for artificial joints applications. Colloids and Surfaces B: Biointerfaces, 2020, 189, 110819.	5.0	17
12	Preparation and properties of BSA-loaded microspheres based on multi-(amino acid) copolymer for protein delivery. International Journal of Nanomedicine, 2014, 9, 1957.	6.7	16
13	Nanoporosity improved water absorption, in vitro degradability, mineralization, osteoblast responses and drug release of poly(butylene succinate)-based composite scaffolds containing nanoporous magnesium silicate compared with magnesium silicate. International Journal of Nanomedicine, 2017, Volume 12, 3637-3651.	6.7	15
14	Toughening of polycarbonate by coreâ€shell latex particles: Influence of particle size and spatial distribution on brittleâ€ductile transition. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 1970-1977.	2.1	14
15	Unique Crystallization Behavior of Poly(L-lactic acid) Nucleated by Stereocomplex with Different Fine Structure. Polymer-Plastics Technology and Engineering, 2013, 52, 690-698.	1.9	13
16	Development of nanofluorapatite polymer-based composite for bioactive orthopedic implants and prostheses. International Journal of Nanomedicine, 2014, 9, 3875.	6.7	10
17	Improvement of bioactivity, degradability, and cytocompatibility of biocement by addition of mesoporous magnesium silicate into sodium-magnesium phosphate cement. Journal of Materials Science: Materials in Medicine, 2015, 26, 238.	3.6	10
18	Biocompatibility, degradability, bioactivity and osteogenesis of mesoporous/macroporous scaffolds of mesoporous diopside/poly(l -lactide) composite. Journal of the Royal Society Interface, 2015, 12, 20150507.	3.4	10

Songchao Tang

#	Article	IF	CITATIONS
19	Preparation and characterization of bioactive and degradable composites containing ordered mesoporous calcium-magnesium silicate and poly(l-lactide). Applied Surface Science, 2014, 317, 1090-1099.	6.1	9
20	Influences of sodium tantalite submicro-particles in polyetheretherketone based composites on behaviors of rBMSCs/HGE-1 cells for dental application. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110723.	5.0	9
21	Improvement of rBMSCs Responses to Poly(propylene carbonate) Based Biomaterial through Incorporation of Nanolaponite and Surface Treatment Using Sodium Hydroxide. ACS Biomaterials Science and Engineering, 2020, 6, 329-339.	5.2	7
22	Silkâ€Inspired βâ€Peptide Materials Resist Fouling and the Foreignâ€Body Response. Angewandte Chemie, 2020, 132, 9673-9680.	2.0	7
23	Crystalline, Thermal, and Biodegradable Properties of Poly(L-Lactic Acid)/Poly(D-Lactic Acid)/POSS Melt Blends. Polymer-Plastics Technology and Engineering, 2016, 55, 1000-1011.	1.9	6
24	Blended films containing polybutyrolactam and chitosan for potential wound dressing applications. Journal of Applied Polymer Science, 2018, 135, 46511.	2.6	6
25	Unique Homo-Crystallization and Melting Behavior of Poly(L-lactic acid): Influence of Stereocomplex with Varied Structure. Polymer-Plastics Technology and Engineering, 2015, 54, 1-13.	1.9	4
26	Tuning of the surface biological behavior of poly(L-lactide)-based composites by the incorporation of polyelectrolyte complexes for bone regeneration. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 1713-1727.	3.5	3
27	Improvement of surface hydrophilicity, water uptake, biodegradability, and cytocompatibility through the incorporation of chitosan oligosaccharide into poly(<scp>l</scp> â€lactide). Journal of Applied Polymer Science, 2018, 135, 45724.	2.6	1