
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7073435/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Agricultural sustainability and intensive production practices. Nature, 2002, 418, 671-677.                                                                                                                                    | 13.7 | 5,748     |
| 2  | Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9971-9975.                                                  | 3.3  | 1,859     |
| 3  | Agroecosystems, Nitrogen-use Efficiency, and Nitrogen Management. Ambio, 2002, 31, 132-140.                                                                                                                                    | 2.8  | 1,251     |
| 4  | Ecological intensification of cereal production systems: Yield potential, soil quality, and precision<br>agriculture. Proceedings of the National Academy of Sciences of the United States of America, 1999,<br>96, 5952-5959. | 3.3  | 1,123     |
| 5  | Yield gap analysis with local to global relevance—A review. Field Crops Research, 2013, 143, 4-17.                                                                                                                             | 2.3  | 1,111     |
| 6  | Agricultural expansion and its impacts on tropical nature. Trends in Ecology and Evolution, 2014, 29, 107-116.                                                                                                                 | 4.2  | 1,045     |
| 7  | Crop Yield Gaps: Their Importance, Magnitudes, and Causes. Annual Review of Environment and<br>Resources, 2009, 34, 179-204.                                                                                                   | 5.6  | 1,038     |
| 8  | MEETINGCEREALDEMANDWHILEPROTECTINGNATURALRESOURCES ANDIMPROVINGENVIRONMENTALQUALITY. Annual Review of Environment and Resources, 2003, 28, 315-358.                                                                            | 5.6  | 774       |
| 9  | Distinguishing between yield advances and yield plateaus in historical crop production trends. Nature<br>Communications, 2013, 4, 2918.                                                                                        | 5.8  | 611       |
| 10 | Integrated soil–crop system management for food security. Proceedings of the National Academy of<br>Sciences of the United States of America, 2011, 108, 6399-6404.                                                            | 3.3  | 606       |
| 11 | Limited potential of no-till agriculture for climate change mitigation. Nature Climate Change, 2014, 4, 678-683.                                                                                                               | 8.1  | 594       |
| 12 | New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China.<br>Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8375-8380.                               | 3.3  | 593       |
| 13 | Can sub-Saharan Africa feed itself?. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14964-14969.                                                                                  | 3.3  | 564       |
| 14 | Yield Potential Trends of Tropical Rice since the Release of IR8 and the Challenge of Increasing Rice<br>Yield Potential. Crop Science, 1999, 39, 1552-1559.                                                                   | 0.8  | 553       |
| 15 | Post–Green Revolution Trends in Yield Potential of Temperate Maize in the North entral United<br>States. Crop Science, 1999, 39, 1622-1630.                                                                                    | 0.8  | 534       |
| 16 | Annual carbon dioxide exchange in irrigated and rainfed maize-based agroecosystems. Agricultural and Forest Meteorology, 2005, 131, 77-96.                                                                                     | 1.9  | 449       |
| 17 | Global nitrogen budgets in cereals: A 50-year assessment for maize, rice and wheat production systems. Scientific Reports, 2016, 6, 19355.                                                                                     | 1.6  | 343       |
| 18 | Estimating crop yield potential at regional to national scales. Field Crops Research, 2013, 143, 34-43.                                                                                                                        | 2.3  | 308       |

| #  | Article                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A global perspective on sustainable intensification research. Nature Sustainability, 2020, 3, 262-268.                                                                                     | 11.5 | 260       |
| 20 | Nitrogen Mineralization as Affected by Soil Moisture, Temperature, and Depth. Soil Science Society of America Journal, 1980, 44, 1233-1237.                                                | 1.2  | 259       |
| 21 | High-yield maize with large net energy yield and small global warming intensity. Proceedings of the<br>National Academy of Sciences of the United States of America, 2012, 109, 1074-1079. | 3.3  | 256       |
| 22 | How good is good enough? Data requirements for reliable crop yield simulations and yield-gap<br>analysis. Field Crops Research, 2015, 177, 49-63.                                          | 2.3  | 253       |
| 23 | Adjustment for Specific Leaf Weight Improves Chlorophyll Meter's Estimate of Rice Leaf Nitrogen<br>Concentration. Agronomy Journal, 1993, 85, 987-990.                                     | 0.9  | 249       |
| 24 | High-yield irrigated maize in the Western U.S. Corn Belt: I. On-farm yield, yield potential, and impact of<br>agronomic practices. Field Crops Research, 2011, 120, 142-150.               | 2.3  | 249       |
| 25 | The Ripple Effect: Biofuels, Food Security, and the Environment. Environment, 2007, 49, 30-43.                                                                                             | 0.8  | 246       |
| 26 | Use of agro-climatic zones to upscale simulated crop yield potential. Field Crops Research, 2013, 143, 44-55.                                                                              | 2.3  | 234       |
| 27 | Improvements in Life Cycle Energy Efficiency and Greenhouse Gas Emissions of Cornâ€Ethanol. Journal of Industrial Ecology, 2009, 13, 58-74.                                                | 2.8  | 222       |
| 28 | Maize Radiation Use Efficiency under Optimal Growth Conditions. Agronomy Journal, 2005, 97, 72-78.                                                                                         | 0.9  | 221       |
| 29 | Comparison of high-yield rice in tropical and subtropical environments. Field Crops Research, 1998, 57, 71-84.                                                                             | 2.3  | 216       |
| 30 | Limits to maize productivity in Western Corn-Belt: A simulation analysis for fully irrigated and rainfed conditions. Agricultural and Forest Meteorology, 2009, 149, 1254-1265.            | 1.9  | 211       |
| 31 | Closing yield gaps for rice self-sufficiency in China. Nature Communications, 2019, 10, 1725.                                                                                              | 5.8  | 179       |
| 32 | Reversal of Rice Yield Decline in a Longâ€Term Continuous Cropping Experiment. Agronomy Journal,<br>2000, 92, 633-643.                                                                     | 0.9  | 166       |
| 33 | Fertilizerâ€Nitrogen Use Efficiency of Irrigated Wheat: I. Uptake Efficiency of Preplant versus Late‧eason<br>Application. Agronomy Journal, 1992, 84, 682-688.                            | 0.9  | 153       |
| 34 | From field to atlas: Upscaling of location-specific yield gap estimates. Field Crops Research, 2015, 177,<br>98-108.                                                                       | 2.3  | 145       |
| 35 | Potential for crop production increase in Argentina through closure of existing yield gaps. Field<br>Crops Research, 2015, 184, 145-154.                                                   | 2.3  | 144       |
| 36 | Agricultural innovation to protect the environment. Proceedings of the National Academy of<br>Sciences of the United States of America, 2013, 110, 8345-8348.                              | 3.3  | 141       |

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Fertilizer inputs, nutrient balance, and soil nutrient-supplying power in intensive, irrigated rice<br>systems. I. Potassium uptake and K balance. Nutrient Cycling in Agroecosystems, 1996, 46, 1-10.             | 1.1  | 139       |
| 38 | Soybean Sowing Date: The Vegetative, Reproductive, and Agronomic Impacts. Crop Science, 2008, 48, 727-740.                                                                                                         | 0.8  | 138       |
| 39 | The Nitrogen Balancing Act: Tracking the Environmental Performance of Food Production.<br>BioScience, 2018, 68, 194-203.                                                                                           | 2.2  | 136       |
| 40 | Intensification of irrigated rice systems: Learning from the past to meet future challenges. Geo<br>Journal, 1995, 35, 299-305.                                                                                    | 1.7  | 132       |
| 41 | Soybean yield gaps and water productivity in the western U.S. Corn Belt. Field Crops Research, 2015, 179, 150-163.                                                                                                 | 2.3  | 132       |
| 42 | Upper Threshholds of Nitrogen Uptake Rates and Associated Nitrogen Fertilizer Efficiencies in<br>Irrigated Rice. Agronomy Journal, 1998, 90, 178-185.                                                              | 0.9  | 131       |
| 43 | Monitoring the world's agriculture. Nature, 2010, 466, 558-560.                                                                                                                                                    | 13.7 | 127       |
| 44 | Soil organic matter and the indigenous nitrogen supply of intensive irrigated rice systems in the tropics. Plant and Soil, 1996, 182, 267-278.                                                                     | 1.8  | 126       |
| 45 | A World of Cobenefits: Solving the Global Nitrogen Challenge. Earth's Future, 2019, 7, 865-872.                                                                                                                    | 2.4  | 122       |
| 46 | High-yield irrigated maize in the Western U.S. Corn Belt: II. Irrigation management and crop water productivity. Field Crops Research, 2011, 120, 133-141.                                                         | 2.3  | 114       |
| 47 | Impact of derived global weather data on simulated crop yields. Global Change Biology, 2013, 19, 3822-3834.                                                                                                        | 4.2  | 113       |
| 48 | Evaluation of NASA Satellite―and Modelâ€Derived Weather Data for Simulation of Maize Yield Potential<br>in China. Agronomy Journal, 2010, 102, 9-16.                                                               | 0.9  | 109       |
| 49 | Phosphorus Requirements of Soybean and Cowpea as Affected by Mode of N Nutrition <sup>1</sup> .<br>Agronomy Journal, 1981, 73, 17-22.                                                                              | 0.9  | 104       |
| 50 | Nitrogen supply affects root:shoot ratio in corn and velvetleaf (Abutilon theophrasti). Weed Science,<br>2005, 53, 670-675.                                                                                        | 0.8  | 103       |
| 51 | Losses of Ammonia and Nitrate from Agriculture and Their Effect on Nitrogen Recovery in the<br>European Union and the United States between 1900 and 2050. Journal of Environmental Quality, 2015,<br>44, 356-367. | 1.0  | 100       |
| 52 | Aggregate Size Effects on the Sorption and Release of Phosphorus in an Ultisol. Soil Science Society of America Journal, 1997, 61, 160-166.                                                                        | 1.2  | 98        |
| 53 | Chlorophyll meter estimates leaf areaâ€based nitrogen concentration of rice. Communications in Soil<br>Science and Plant Analysis, 1995, 26, 927-935.                                                              | 0.6  | 96        |
| 54 | Can ratoon cropping improve resource use efficiencies and profitability of rice in central China?.<br>Field Crops Research, 2019, 234, 66-72.                                                                      | 2.3  | 94        |

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Long-Term Effects of Tillage on Soil Chemical Properties and Grain Yields of a Dryland Winter<br>Wheat-Sorghum/Corn-Fallow Rotation in the Great Plains. Agronomy Journal, 2006, 98, 26-33. | 0.9 | 93        |
| 56 | Growth and Nitrogen Fixation in High-Yielding Soybean: Impact of Nitrogen Fertilization. Agronomy<br>Journal, 2009, 101, 958-970.                                                           | 0.9 | 91        |
| 57 | Relationship between Leaf Photosynthesis and Nitrogen Content of Fieldâ€Grown Rice in Tropics. Crop<br>Science, 1995, 35, 1627-1630.                                                        | 0.8 | 90        |
| 58 | Root Growth and Dry Matter Distribution of Soybean as Affected by Phosphorus Stress, Nodulation, and Nitrogen Source <sup>1</sup> . Crop Science, 1980, 20, 239-244.                        | 0.8 | 89        |
| 59 | Mapping rootable depth and root zone plant-available water holding capacity of the soil of sub-Saharan Africa. Geoderma, 2018, 324, 18-36.                                                  | 2.3 | 87        |
| 60 | Sustainable intensification for a larger global rice bowl. Nature Communications, 2021, 12, 7163.                                                                                           | 5.8 | 82        |
| 61 | Differential Response of Two Cotton Cultivars to Fertilizer and Soil Potassium. Agronomy Journal, 1989, 81, 870-876.                                                                        | 0.9 | 81        |
| 62 | INORGANIC AND ORGANIC PHOSPHORUS DYNAMICS DURING A BUILD-UP AND DECLINE OF AVAILABLE PHOSPHORUS IN AN ULTISOL. Soil Science, 1997, 162, 254-264.                                            | 0.9 | 80        |
| 63 | Long-term Comparison of the Agronomic Efficiency and Residual Benefits of Organic and Inorganic<br>Nitrogen Sources for Tropical Lowland Rice. Experimental Agriculture, 1996, 32, 427-444. | 0.4 | 77        |
| 64 | Fertilizer inputs, nutrient balance and soil nutrient supplying power in intensive, irrigated rice system. III. Phosphorus. Nutrient Cycling in Agroecosystems, 1996, 46, 111-125.          | 1.1 | 76        |
| 65 | Biosolids as Nitrogen Source for Irrigated Maize and Rainfed Sorghum. Soil Science Society of<br>America Journal, 2002, 66, 531-543.                                                        | 1.2 | 76        |
| 66 | Testing Remote Sensing Approaches for Assessing Yield Variability among Maize Fields. Agronomy<br>Journal, 2014, 106, 24-32.                                                                | 0.9 | 73        |
| 67 | Estimating yield gaps at the cropping system level. Field Crops Research, 2017, 206, 21-32.                                                                                                 | 2.3 | 73        |
| 68 | Features, Applications, and Limitations of the Hybridâ€Maize Simulation Model. Agronomy Journal, 2006,<br>98, 737-748.                                                                      | 0.9 | 70        |
| 69 | Water productivity of rainfed maize and wheat: A local to global perspective. Agricultural and Forest<br>Meteorology, 2018, 259, 364-373.                                                   | 1.9 | 70        |
| 70 | Maizeâ€N: A Decision Tool for Nitrogen Management in Maize. Agronomy Journal, 2011, 103, 1276-1283.                                                                                         | 0.9 | 67        |
| 71 | Can crop simulation models be used to predict local to regional maize yields and total production in the U.S. Corn Belt?. Field Crops Research, 2016, 192, 1-12.                            | 2.3 | 67        |
| 72 | Potassium Nutrition Effects on Lint Yield and Fiber Quality of Acala Cotton. Crop Science, 1990, 30,<br>672-677.                                                                            | 0.8 | 66        |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | The importance of maintenance breeding: A case study of the first miracle rice variety-IR8. Field Crops<br>Research, 2010, 119, 342-347.                                                          | 2.3 | 62        |
| 74 | Climate and agronomy, not genetics, underpin recent maize yield gains in favorable environments.<br>Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, . | 3.3 | 62        |
| 75 | Comparison of high-yield rice in tropical and subtropical environments. Field Crops Research, 1998, 57, 85-93.                                                                                    | 2.3 | 60        |
| 76 | Large-Scale On-Farm Implementation of Soil Moisture-Based Irrigation Management Strategies for<br>Increasing Maize Water Productivity. Transactions of the ASABE, 2012, 55, 881-894.              | 1.1 | 59        |
| 77 | Yield gap analysis of US rice production systems shows opportunities for improvement. Field Crops Research, 2016, 196, 276-283.                                                                   | 2.3 | 59        |
| 78 | Soil Potassium Balance and Cumulative Cotton Response to Annual Potassium Additions on a Vermiculitic Soil. Soil Science Society of America Journal, 1989, 53, 805-812.                           | 1.2 | 57        |
| 79 | Nitrogen Supply Effects on Partitioning of Dry Matter and Nitrogen to Grain of Irrigated Wheat. Crop<br>Science, 1992, 32, 1251-1258.                                                             | 0.8 | 57        |
| 80 | Genotypes and Plant Densities for Narrowâ€Row Cotton Systems. I. Height, Nodes, Earliness, and<br>Location of Yield. Crop Science, 1990, 30, 644-649.                                             | 0.8 | 54        |
| 81 | Prospects for Increasing Sugarcane and Bioethanol Production on Existing Crop Area in Brazil.<br>BioScience, 2016, 66, 307-316.                                                                   | 2.2 | 51        |
| 82 | A steady-state N balance approach for sustainable smallholder farming. Proceedings of the National<br>Academy of Sciences of the United States of America, 2021, 118, .                           | 3.3 | 49        |
| 83 | Phosphorus Nutrition of Rhizobium japonicum: Strain Differences in Phosphate Storage and<br>Utilization. Soil Science Society of America Journal, 1981, 45, 517-520.                              | 1.2 | 48        |
| 84 | Fertilizerâ€Nitrogen Use Efficiency of Irrigated Wheat: II. Partitioning Efficiency of Preplant versus<br>Lateâ€6eason Application. Agronomy Journal, 1992, 84, 689-694.                          | 0.9 | 48        |
| 85 | Acidification of Soil in a Dry Land Winter Wheat-sorghum/corn-fallow Rotation in the Semiarid U.S.<br>Great Plains. Plant and Soil, 2006, 283, 367-379.                                           | 1.8 | 48        |
| 86 | Towards Standardization of Life-Cycle Metrics for Biofuels: Greenhouse Gas Emissions Mitigation and<br>Net Energy Yield. Journal of Biobased Materials and Bioenergy, 2008, 2, 187-203.           | 0.1 | 48        |
| 87 | Drivers of spatial and temporal variation in soybean yield and irrigation requirements in the western<br>US Corn Belt. Field Crops Research, 2014, 163, 32-46.                                    | 2.3 | 46        |
| 88 | Beyond the plot: technology extrapolation domains for scaling out agronomic science.<br>Environmental Research Letters, 2018, 13, 054027.                                                         | 2.2 | 41        |
| 89 | Contribution of persistent factors to yield gaps in high-yield irrigated maize. Field Crops Research, 2016, 186, 124-132.                                                                         | 2.3 | 40        |
| 90 | Growth of Rhizobium Strains at Low Concentrations of Phosphate. Soil Science Society of America<br>Journal, 1981, 45, 520-523.                                                                    | 1.2 | 39        |

| #   | Article                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Reduction of Potassium Fixation by Two Humic Acid Fractions in Vermiculitic Soils. Soil Science<br>Society of America Journal, 1995, 59, 1250-1258.                                             | 1.2 | 39        |
| 92  | Soil microbial biomass and nitrogen supply in an irrigated lowland rice soil as affected by crop rotation and residue management. Biology and Fertility of Soils, 1998, 28, 71-80.              | 2.3 | 39        |
| 93  | Nitrogen and the future of agriculture: 20Âyears on. Ambio, 2022, 51, 17-24.                                                                                                                    | 2.8 | 38        |
| 94  | Nitrogen use efficiency of irrigated tropical rice established by broadcast wet-seeding and transplanting. Fertilizer Research, 1995, 45, 123-134.                                              | 0.5 | 36        |
| 95  | Can there be a green revolution in Sub-Saharan Africa without large expansion of irrigated crop production?. Global Food Security, 2013, 2, 203-209.                                            | 4.0 | 34        |
| 96  | Temperature explains the yield difference of double-season rice between tropical and subtropical environments. Field Crops Research, 2016, 198, 303-311.                                        | 2.3 | 34        |
| 97  | Soil Acidity and Liming Effects on Stand, Nodulation, and Yield of Common Bean. Agronomy Journal, 1990, 82, 749-754.                                                                            | 0.9 | 33        |
| 98  | Evaluation of a Mechanistic Model of Potassium Uptake by Cotton in Vermiculitic Soil. Soil Science<br>Society of America Journal, 1994, 58, 1174-1183.                                          | 1.2 | 33        |
| 99  | Crop Yield Potential, Yield Trends, and Global Food Security in a Changing Climate. ICP Series on<br>Climate Change Impacts, Adaptation, and Mitigation, 2010, , 37-51.                         | 0.4 | 33        |
| 100 | Improvements to the Hybrid-Maize model for simulating maize yields in harsh rainfed environments.<br>Field Crops Research, 2017, 204, 180-190.                                                  | 2.3 | 33        |
| 101 | Kinetics of Potassium Fixation in Vermiculitic Soils under Different Moisture Regimes. Soil Science<br>Society of America Journal, 1995, 59, 423-429.                                           | 1.2 | 32        |
| 102 | Spatial frameworks for robust estimation of yield gaps. Nature Food, 2021, 2, 773-779.                                                                                                          | 6.2 | 32        |
| 103 | Soil water recharge in a semi-arid temperate climate of the Central U.S. Great Plains. Agricultural<br>Water Management, 2010, 97, 1063-1069.                                                   | 2.4 | 31        |
| 104 | Exploitation of Soil Potassium in Layered Profiles by Root Systems of Cotton and Barley. Soil Science<br>Society of America Journal, 1989, 53, 146-153.                                         | 1.2 | 30        |
| 105 | Residual phosphorus and long-term management strategies for an Ultisol. Plant and Soil, 1996, 184,<br>47-55.                                                                                    | 1.8 | 30        |
| 106 | Yield gap analysis of rainfed wheat demonstrates local to global relevance. Journal of Agricultural<br>Science, 2017, 155, 282-299.                                                             | 0.6 | 30        |
| 107 | Benchmarking impact of nitrogen inputs on grain yield and environmental performance of producer fields in the western US Corn Belt. Agriculture, Ecosystems and Environment, 2020, 294, 106865. | 2.5 | 30        |
| 108 | Assessing variation in maize grain nitrogen concentration and its implications for estimating nitrogen balance in the US North Central region. Field Crops Research, 2019, 240, 185-193.        | 2.3 | 29        |

| #   | Article                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Cotton root and shoot response to localized supply of nitrate, phosphate and potassium: Split-pot studies with nutrient solution and vermiculitic soil. Plant and Soil, 1994, 161, 179-193.        | 1.8 | 28        |
| 110 | Microbial biomass and organic matter turnover in wetland rice soils. Biology and Fertility of Soils, 1995, 19, 333-342.                                                                            | 2.3 | 28        |
| 111 | High-yield maize–soybean cropping systems in the US Corn Belt. , 2015, , 17-41.                                                                                                                    |     | 28        |
| 112 | Nutritional physiology of the rice plants and productivity decline of irrigated rice systems in the tropics. Soil Science and Plant Nutrition, 1997, 43, 1101-1106.                                | 0.8 | 27        |
| 113 | Biosolids as Nitrogen Source for Irrigated Maize and Rainfed Sorghum. Soil Science Society of America Journal, 2002, 66, 531.                                                                      | 1.2 | 27        |
| 114 | Comparison of soil test methods for predicting cotton response to soil and fertilizer potassium on potassium fixing soils. Communications in Soil Science and Plant Analysis, 1990, 21, 1727-1743. | 0.6 | 26        |
| 115 | A model to predict crop response to applied fertilizer nutrients in heterogeneous fields. Fertilizer Research, 1992, 31, 151-163.                                                                  | 0.5 | 26        |
| 116 | Characterization of Humic Acid Fractions Improves Estimates of Nitrogen Mineralization Kinetics for Lowland Rice Soils. Soil Science Society of America Journal, 2004, 68, 1266-1277.              | 1.2 | 26        |
| 117 | Genotypes and Plant Densities for Narrowâ€Row Cotton Systems. II. Leaf Area and Dryâ€Matter<br>Partitioning. Crop Science, 1990, 30, 649-653.                                                      | 0.8 | 26        |
| 118 | Cotton Response to Residual Fertilizer Potassium on Vermiculitic Soil: Organic Matter and Sodium<br>Effects. Soil Science Society of America Journal, 1992, 56, 823-830.                           | 1.2 | 25        |
| 119 | Emissions Savings in the Cornâ€Ethanol Life Cycle from Feeding Coproducts to Livestock. Journal of Environmental Quality, 2010, 39, 472-482.                                                       | 1.0 | 25        |
| 120 | Soybean Phenology Simulation in the North entral United States. Agronomy Journal, 2011, 103, 1661-1667.                                                                                            | 0.9 | 25        |
| 121 | Soybean Root Development Relative to Vegetative and Reproductive Phenology. Agronomy Journal, 2012, 104, 1702-1709.                                                                                | 0.9 | 25        |
| 122 | Estimating yield potential in temperate high-yielding, direct-seeded US rice production systems. Field<br>Crops Research, 2016, 193, 123-132.                                                      | 2.3 | 25        |
| 123 | Rooting for food security in Sub-Saharan Africa. Environmental Research Letters, 2017, 12, 114036.                                                                                                 | 2.2 | 24        |
| 124 | Rotation Impact on Onâ€Farm Yield and Inputâ€Use Efficiency in Highâ€Yield Irrigated Maize–Soybean<br>Systems. Agronomy Journal, 2016, 108, 2313-2321.                                             | 0.9 | 23        |
| 125 | Nitrogen Mineralization from Humic Acid Fractions in Rice Soils Depends on Degree of Humification.<br>Soil Science Society of America Journal, 2004, 68, 1278-1284.                                | 1.2 | 20        |
| 126 | Quantifying Onâ€Farm Nitrous Oxide Emission Reductions in Food Supply Chains. Earth's Future, 2020, 8,<br>e2020EF001504.                                                                           | 2.4 | 19        |

| #   | Article                                                                                                                                                   | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Increasing the Yield Plateau in Rice and the Role of Global Climate Change. J Agricultural<br>Meteorology, 1993, 48, 795-798.                             | 0.8  | 19        |
| 128 | Impact of urbanization trends on production of key staple crops. Ambio, 2022, 51, 1158-1167.                                                              | 2.8  | 18        |
| 129 | A spatial framework for ex-ante impact assessment of agricultural technologies. Global Food<br>Security, 2019, 20, 72-81.                                 | 4.0  | 17        |
| 130 | Effective monitoring of agriculture: a response. Journal of Environmental Monitoring, 2012, 14, 738.                                                      | 2.1  | 16        |
| 131 | Nitrogen supplying capacity of lowland rice soils in southern India. Communications in Soil Science and Plant Analysis, 1996, 27, 2851-2874.              | 0.6  | 15        |
| 132 | Use of Herbicide-Tolerant Crops as a Component of an Integrated Weed Management Program. Crop<br>Management, 2003, 2, 1-7.                                | 0.3  | 15        |
| 133 | Nodal Leaf Area Distribution in Soybean Plants Grown in High Yield Environments. Agronomy Journal, 2011, 103, 1198-1204.                                  | 0.9  | 15        |
| 134 | Yield, Dinitrogen Fixation, and Aboveground Nitrogen Balance of Irrigated White Lupin in a<br>Mediterranean Climate. Agronomy Journal, 1989, 81, 538-543. | 0.9  | 14        |
| 135 | Green revolution still too green. Nature, 1999, 398, 556-556.                                                                                             | 13.7 | 14        |
| 136 | Soybean Irrigation Management: Agronomic Impacts of Deferred, Deficit, and Full‣eason Strategies.<br>Crop Science, 2014, 54, 2782-2795.                   | 0.8  | 14        |
| 137 | Robust spatial frameworks for leveraging research on sustainable crop intensification. Global Food Security, 2017, 14, 18-22.                             | 4.0  | 14        |
| 138 | Progress Towards Perennial Grains for Prairies and Plains. Outlook on Agriculture, 2022, 51, 32-38.                                                       | 1.8  | 12        |
| 139 | Effect of Leaf Phosphorus and Potassium Concentration on Chlorophyll Meter Reading in Rice. Plant<br>Production Science, 1999, 2, 227-231.                | 0.9  | 11        |
| 140 | Effects of variations in soil water potential, depth of N placement, and cultivar on postanthesis N<br>uptake by wheat. Plant and Soil, 1992, 143, 45-53. | 1.8  | 10        |
| 141 | Nitrogen Fixation by Irrigated Berseem Clover versus Soil Nitrogen Supply. Journal of Agronomy and<br>Crop Science, 1990, 164, 202-207.                   | 1.7  | 9         |
| 142 | Reply to 'No-till agriculture and climate change mitigation'. Nature Climate Change, 2015, 5, 489-489.                                                    | 8.1  | 9         |
| 143 | Microwaveâ€oven drying of rice leaves for rapid determination of dry weight and nitrogen concentration. Journal of Plant Nutrition, 1994, 17, 209-217.    | 0.9  | 6         |
| 144 | Disentangling management factors influencing nitrogen balance in producer fields in the western<br>Corn Belt. Agricultural Systems, 2021, 193, 103245.    | 3.2  | 5         |

| #   | ARTICLE                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | A cropping systems approach to salinity management in California. Renewable Agriculture and Food<br>Systems, 1986, 1, 115-121.                                                            | 0.6  | 4         |
| 146 | Temporal Origin of Nitrogen in the Grain of Tropical Wet-Season Rice. Agronomy Journal, 2005, 97,<br>698-704.                                                                             | 0.9  | 4         |
| 147 | The impact of meat consumption on the tropics: reply to Machovina and Feeley. Trends in Ecology and Evolution, 2014, 29, 432.                                                             | 4.2  | 3         |
| 148 | Luck versus Skill: Is Nitrogen Balance in Irrigated Maize Fields Driven by Persistent or Random<br>Factors?. Environmental Science & Technology, 2021, 55, 749-756.                       | 4.6  | 3         |
| 149 | A Low-Cost System for Circulating Nutrient Solutions in Pot Studies1. Crop Science, 1980, 20, 110.                                                                                        | 0.8  | 3         |
| 150 | POTENTIAL BENEFITS OF LAND APPLYING BIOSOLIDS IN EASTERN NEBRASKA. Proceedings of the Water Environment Federation, 2001, 2001, 1011-1024.                                                | 0.0  | 1         |
| 151 | Response to Comment by C. G. Kowalenko. Soil Science Society of America Journal, 1981, 45, 1006-1006.                                                                                     | 1.2  | 1         |
| 152 | Is fertilization efficiency misleading?. Nature, 2003, 422, 398-398.                                                                                                                      | 13.7 | 0         |
| 153 | Biofuels or Food?. Scientific American, 2008, 18, 28-28.                                                                                                                                  | 1.0  | 0         |
| 154 | Response to comment on "Evaluating conservation agriculture for small-scale farmers in<br>Sub-Saharan Africa and South Asia― Agriculture, Ecosystems and Environment, 2014, 196, 112-113. | 2.5  | 0         |
| 155 | Spatial Frameworks to Support Agronomic Innovation. Crops & Soils, 2021, 54, 46-51.                                                                                                       | 0.1  | 0         |
| 156 | Water-efficient clover fixes soil nitrogen, provides winter forage crop. California Agriculture, 1991,<br>45, 30-32.                                                                      | 0.5  | 0         |