Nadja Zaborsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7073370/publications.pdf

Version: 2024-02-01

840776 713466 32 500 11 21 citations h-index g-index papers 34 34 34 859 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	CAR T-Cell Therapy in Hematological Malignancies. International Journal of Molecular Sciences, 2021, 22, 8996.	4.1	73
2	TIGIT expressing CD4+T cells represent a tumor-supportive T cell subset in chronic lymphocytic leukemia. Oncolmmunology, 2018, 7, e1371399.	4.6	55
3	Next Generation Sequencing in AMLâ€"On the Way to Becoming a New Standard for Treatment Initiation and/or Modulation?. Cancers, 2019, 11, 252.	3.7	44
4	Chronic lymphocytic leukaemia induces an exhausted T cell phenotype in the <scp>TCL</scp> 1 transgenic mouse model. British Journal of Haematology, 2015, 170, 515-522.	2.5	38
5	Chemotherapy-induced augmentation of T cells expressing inhibitory receptors is reversed by treatment with lenalidomide in chronic lymphocytic leukemia. Haematologica, 2014, 99, 67-69.	3.5	35
6	Combination Strategies for Immune-Checkpoint Blockade and Response Prediction by Artificial Intelligence. International Journal of Molecular Sciences, 2020, 21, 2856.	4.1	31
7	BIRC3 Expression Predicts CLL Progression and Defines Treatment Sensitivity via Enhanced NF-κB Nuclear Translocation. Clinical Cancer Research, 2019, 25, 1901-1912.	7.0	23
8	Exome sequencing of the TCL1 mouse model for CLL reveals genetic heterogeneity and dynamics during disease development. Leukemia, 2019, 33, 957-968.	7.2	22
9	Epidermal activation of Hedgehog signaling establishes an immunosuppressive microenvironment in basal cell carcinoma by modulating skin immunity. Molecular Oncology, 2020, 14, 1930-1946.	4.6	21
10	B-cell–specific IRF4 deletion accelerates chronic lymphocytic leukemia development by enhanced tumor immune evasion. Blood, 2019, 134, 1717-1729.	1.4	17
11	RNA editing contributes to epitranscriptome diversity in chronic lymphocytic leukemia. Leukemia, 2021, 35, 1053-1063.	7.2	17
12	The Effect of SF3B1 Mutation on the DNA Damage Response and Nonsense-Mediated mRNA Decay in Cancer. Frontiers in Oncology, 2020, 10, 609409.	2.8	15
13	SAMHD1 restrains aberrant nucleotide insertions at repair junctions generated by DNA end joining. Nucleic Acids Research, 2021, 49, 2598-2608.	14.5	15
14	Imprecision and DNA Break Repair Biased towards Incompatible End Joining in Leukemia. Molecular Cancer Research, 2018, 16, 428-438.	3.4	11
15	RNA Editing Alters miRNA Function in Chronic Lymphocytic Leukemia. Cancers, 2020, 12, 1159.	3.7	11
16	B cell receptor usage correlates with the sensitivity to CD40 stimulation and the occurrence of CD4+T cell clonality in chronic lymphocytic leukemia. Haematologica, 2015, 100, e307-10.	3.5	10
17	Impact of PD-L1 Scores and Changes on Clinical Outcome in Rectal Cancer Patients Undergoing Neoadjuvant Chemoradiotherapy. Journal of Clinical Medicine, 2020, 9, 2775.	2.4	10
18	miRNA-Based Therapeutics in the Era of Immune-Checkpoint Inhibitors. Pharmaceuticals, 2021, 14, 89.	3.8	9

#	Article	IF	CITATIONS
19	CD1d expression on chronic lymphocytic leukemia B cells affects disease progression and induces T cell skewing in CD8 positive and CD4CD8 double negative T cells. Oncotarget, 2016, 7, 49459-49469.	1.8	8
20	Fludarabine and rituximab with escalating doses of lenalidomide followed by lenalidomide/rituximab maintenance in previously untreated chronic lymphocytic leukaemia (CLL): the REVLIRIT CLL-5 AGMT phase I/II study. Annals of Hematology, 2018, 97, 1825-1839.	1.8	6
21	Evaluation of circulating cell-free KRAS mutational status as a molecular monitoring tool in patients with pancreatic cancer. Pancreatology, 2021, 21, 1466-1471.	1.1	6
22	AID Contributes to Accelerated Disease Progression in the TCL1 Mouse Transplant Model for CLL. Cancers, 2021, 13, 2619.	3.7	5
23	Spatial Heterogeneity in Large Resected Diffuse Large B-Cell Lymphoma Bulks Analysed by Massively Parallel Sequencing of Multiple Synchronous Biopsies. Cancers, 2021, 13, 650.	3.7	4
24	Leveraging immune memory against measles virus as an antitumor strategy in a preclinical model of aggressive squamous cell carcinoma., 2021, 9, e002170.		3
25	Detecting Bacterial–Human Lateral Gene Transfer in Chronic Lymphocytic Leukemia. International Journal of Molecular Sciences, 2022, 23, 1094.	4.1	3
26	TCL1 transgenic mice as a model for CD49d-high chronic lymphocytic leukemia. Leukemia, 2020, 34, 2498-2502.	7.2	2
27	A POLE Splice Site Deletion Detected in a Patient with Biclonal CLL and Prostate Cancer: A Case Report. International Journal of Molecular Sciences, 2021, 22, 9410.	4.1	2
28	Evidence for Non-Cancer-Specific T Cell Exhaustion in the Tcl1 Mouse Model for Chronic Lymphocytic Leukemia. International Journal of Molecular Sciences, 2021, 22, 6648.	4.1	1
29	Disease-related blood-based differential methylation in cystic fibrosis and its representation in lung cancer revealed a regulatory locus in <i>PKP3</i> in lung epithelial cells. Epigenetics, 2022, 17, 837-860.	2.7	1
30	Targeting Dysfunctional Myeloid Cells Delays Disease Development and Improves Immune Function in a CLL Mouse Model. Blood, 2014, 124, 3298-3298.	1.4	0
31	The Transcription Factor IRF4 Is Crucial for CLL Progression and Regulates Survival and Proliferation in a Microenvironment Related Manner. Blood, 2014, 124, 1973-1973.	1.4	0
32	Mouse models to decipher anti-tumor immunity. Oncotarget, 2019, 10, 5005-5006.	1.8	0