
Liam M Grover

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7073148/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Determining the Structure of Hexametaphosphate by Titration and ³¹ P-NMR Spectroscopy. Comments on Inorganic Chemistry, 2022, 42, 47-59.	3.0	2
2	Formulation of an antibacterial topical cream containing bioengineered honey that generates reactive oxygen species. Materials Science and Engineering C, 2022, 133, 112664.	3.8	1
3	Optimisation of single contour strategy in selective laser melting of Ti-6Al-4V lattices. Rapid Prototyping Journal, 2022, 28, 907-915.	1.6	7
4	Interconnectivity Explains High Canalicular Network Robustness between Neighboring Osteocyte Lacunae in Human Bone. Advanced NanoBiomed Research, 2022, 2, .	1.7	8
5	Exploring the duality of powder adhesion and underlying surface roughness in laser powder bed fusion processed Ti-6Al-4V. Journal of Manufacturing Processes, 2022, 81, 14-26.	2.8	12
6	An <i>In Vitro</i> Study to Determine the Feasibility of Combining Bone Marrow Concentrate with BST-CarGel as a Treatment for Cartilage Repair. Cartilage, 2021, 12, 226-236.	1.4	5
7	Formulation of an antimicrobial superabsorbent powder that gels in situ to produce reactive oxygen. Materials Science and Engineering C, 2021, 118, 111479.	3.8	8
8	Exploring the Formation of Calcium Orthophosphateâ€₽yrophosphate Chemical Gardens. ChemSystemsChem, 2021, 3, e2000062.	1.1	13
9	Formulation of a reactive oxygen producing calcium sulphate cement as an anti-bacterial hard tissue scaffold. Scientific Reports, 2021, 11, 4491.	1.6	3
10	Trabecular bone organoids: a micron-scale â€~humanised' prototype designed to study the effects of microgravity and degeneration. Npj Microgravity, 2021, 7, 17.	1.9	29
11	Formulation of a Composite Nasal Spray Enabling Enhanced Surface Coverage and Prophylaxis of SARS OVâ€2. Advanced Materials, 2021, 33, e2008304.	11.1	46
12	Hybrid reflection retrieval method for terahertz dielectric imaging of human bone. Biomedical Optics Express, 2021, 12, 4807.	1.5	9
13	Low Acyl Gellan as an Excipient to Improve the Sprayability and Mucoadhesion of lota Carrageenan in a Nasal Spray to Prevent Infection With SARS-CoV-2. Frontiers in Medical Technology, 2021, 3, 687681.	1.3	9
14	Tailoring Therapeutic Responses via Engineering Microenvironments with a Novel Synthetic Fluid Gel. Advanced Healthcare Materials, 2021, 10, 2100622.	3.9	3
15	Formulation of inherently antimicrobial magnesium oxychloride cement and the effect of supplementation with silver phosphate. Materials Science and Engineering C, 2021, 126, 112158.	3.8	2
16	Repeated exposure of nosocomial pathogens to silver does not select for silver resistance but does impact ciprofloxacin susceptibility. Acta Biomaterialia, 2021, 134, 760-773.	4.1	1
17	Thermosensitive collagen/fibrinogen gels loaded with decorin suppress lesion site cavitation and promote functional recovery after spinal cord injury. Scientific Reports, 2021, 11, 18124.	1.6	5
18	Extraction of Terahertz Properties of Human Bone through Fabry-Pérot Modelling. , 2021, , .		0

#	Article	IF	CITATIONS
19	Controlled self-assembly of chemical gardens enables fabrication of heterogeneous chemobrionic materials. Communications Chemistry, 2021, 4, .	2.0	10
20	Fundamental Biomaterial Considerations in the Development of a 3D Model Representative of Primary Open Angle Glaucoma. Bioengineering, 2021, 8, 147.	1.6	5
21	A feasible route for the design and manufacture of customised respiratory protection through digital facial capture. Scientific Reports, 2021, 11, 21449.	1.6	4
22	A suspended layer additive manufacturing approach to the bioprinting of tri-layered skin equivalents. APL Bioengineering, 2021, 5, 046103.	3.3	6
23	Chemobrionic structures in tissue engineering: self-assembling calcium phosphate tubes as cellular scaffolds. Biomaterials Science, 2020, 8, 812-822.	2.6	21
24	A design approach to facilitate selective attachment of bacteria and mammalian cells to additively manufactured implants. Additive Manufacturing, 2020, 36, 101528.	1.7	7
25	The neuroregenerative effects of topical decorin on the injured mouse cornea. Journal of Neuroinflammation, 2020, 17, 142.	3.1	17
26	Post Processing of 3D Printed Metal Scaffolds: a Preliminary Study of Antimicrobial Efficiency. Procedia Manufacturing, 2020, 47, 1106-1112.	1.9	20
27	Reducing MRI susceptibility artefacts in implants using additively manufactured porous Ti-6Al-4V structures. Acta Biomaterialia, 2020, 107, 338-348.	4.1	28
28	Selective Laser Melting of Ti-6Al-4V: The Impact of Post-processing on the Tensile, Fatigue and Biological Properties for Medical Implant Applications. Materials, 2020, 13, 2813.	1.3	69
29	Material, Immunological, and Practical Perspectives on Eye Drop Formulation. Advanced Functional Materials, 2020, 30, 1908476.	7.8	16
30	Filling the Gap: A Correlation between Objective and Subjective Measures of Injectability. Advanced Healthcare Materials, 2020, 9, e1901521.	3.9	34
31	Hexametaphosphate as a potential therapy for the dissolution and prevention of kidney stones. Journal of Materials Chemistry B, 2020, 8, 5215-5224.	2.9	12
32	The Quantification of Injectability by Mechanical Testing. Journal of Visualized Experiments, 2020, , .	0.2	5
33	Natural polymers. , 2019, , 151-192.		14
34	Investigating the intra- and inter-rater reliability of a panel of subjective and objective burn scar measurement tools. Burns, 2019, 45, 1311-1324.	1.1	40
35	Fabrication of Complex Hydrogel Structures Using Suspended Layer Additive Manufacturing (SLAM). Advanced Functional Materials, 2019, 29, 1904845.	7.8	71
36	Evidence of Intrinsic Impairment of Osteoblast Phenotype at the Curve Apex in Girls With Adolescent Idiopathic Scoliosis. Spine Deformity, 2019, 7, 533-542.	0.7	2

#	Article	IF	CITATIONS
37	Clinical, industrial, and research perspectives on powder bed fusion additively manufactured metal implants. Additive Manufacturing, 2019, 28, 565-584.	1.7	70
38	Improving our understanding of metal implant failures: Multiscale chemical imaging of exogenous metals in ex-vivo biological tissues. Acta Biomaterialia, 2019, 98, 284-293.	4.1	19
39	Antimicrobial emulsions: Formulation of a triggered release reactive oxygen delivery system. Materials Science and Engineering C, 2019, 103, 109735.	3.8	4
40	A self-healing hydrogel eye drop for the sustained delivery of decorin to prevent corneal scarring. Biomaterials, 2019, 210, 41-50.	5.7	47
41	Osteoblast-Derived Vesicle Protein Content Is Temporally Regulated During Osteogenesis: Implications for Regenerative Therapies. Frontiers in Bioengineering and Biotechnology, 2019, 7, 92.	2.0	24
42	Physical Structuring of Injectable Polymeric Systems to Controllably Deliver Nanosized Extracellular Vesicles. Advanced Healthcare Materials, 2019, 8, e1801604.	3.9	27
43	Critical and diverse roles of phosphates in human bone formation. Journal of Materials Chemistry B, 2019, 7, 7460-7470.	2.9	30
44	Organotypic Culture of Boneâ€Like Structures Using Composite Ceramicâ€Fibrin Scaffolds. Current Protocols in Stem Cell Biology, 2019, 48, e79.	3.0	9
45	The design of additively manufactured lattices to increase the functionality of medical implants. Materials Science and Engineering C, 2019, 94, 901-908.	3.8	89
46	Postâ€Traumatic Heterotopic Ossification: An Old Problem in Need of New Solutions. Journal of Orthopaedic Research, 2018, 36, 1061-1068.	1.2	35
47	Formulation and viscoelasticity of mineralised hydrogels for use in bone-cartilage interfacial reconstruction. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 80, 33-41.	1.5	9
48	Tailoring selective laser melting process for titanium drug-delivering implants with releasing micro-channels. Additive Manufacturing, 2018, 20, 144-155.	1.7	45
49	Structuring of Hydrogels across Multiple Length Scales for Biomedical Applications. Advanced Materials, 2018, 30, e1705013.	11.1	70
50	Organotypic Bone Culture: An In Vitro Model for the Development of Mature Bone Containing an Osteocyte Network (Adv. Biosys. 2/2018). Advanced Biology, 2018, 2, 1870012.	3.0	2
51	An In Vitro Model for the Development of Mature Bone Containing an Osteocyte Network. Advanced Biology, 2018, 2, 1700156.	3.0	16
52	Interfacial Mineral Fusion and Tubule Entanglement as a Means to Harden a Bone Augmentation Material. Advanced Healthcare Materials, 2018, 7, e1701166.	3.9	12
53	A novel method for the collection of nanoscopic vesicles from an organotypic culture model. RSC Advances, 2018, 8, 7622-7632.	1.7	8
54	PDGF is a potent initiator of bone formation in a tissue engineered model of pathological ossification. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e355-e367.	1.3	17

#	Article	IF	CITATIONS
55	Advances in keratinocyte delivery in burn wound care. Advanced Drug Delivery Reviews, 2018, 123, 18-32.	6.6	150
56	Formulation of a covalently bonded hydroxyapatite and poly(ether ether ketone) composite. Journal of Tissue Engineering, 2018, 9, 204173141881557.	2.3	17
57	Sustained release of decorin to the surface of the eye enables scarless corneal regeneration. Npj Regenerative Medicine, 2018, 3, 23.	2.5	43
58	Influence of Cobalt Ions on Collagen Gel Formation and Their Interaction with Osteoblasts. ACS Omega, 2018, 3, 10129-10138.	1.6	14
59	Fabrication of optimized skin biomimics for improved interfacial retention of cosmetic emulsions. Journal of the Royal Society Interface, 2018, 15, 20180332.	1.5	3
60	Matrix degradation in osteoarthritis primes the superficial region of cartilage for mechanical damage. Acta Biomaterialia, 2018, 78, 320-328.	4.1	34
61	Evaluating the swelling, erosion, and compaction properties of cellulose ethers. Pharmaceutical Development and Technology, 2018, 23, 183-197.	1.1	9
62	A cohesive premixed monetite biocement. Journal of the American Ceramic Society, 2017, 100, 1241-1249.	1.9	7
63	Vesikel in der Natur und im Labor: die AufklĤung der biologischen Eigenschaften und die Synthese zunehmend komplexer synthetischer Vesikel. Angewandte Chemie, 2017, 129, 3188-3208.	1.6	10
64	Suspended Manufacture of Biological Structures. Advanced Materials, 2017, 29, 1605594.	11.1	96
65	Antimicrobial peptide coatings for hydroxyapatite: electrostatic and covalent attachment of antimicrobial peptides to surfaces. Journal of the Royal Society Interface, 2017, 14, 20160657.	1.5	45
66	Reactive oxygen: A novel antimicrobial mechanism for targeting biofilm-associated infection. Journal of Global Antimicrobial Resistance, 2017, 8, 186-191.	0.9	34
67	A mica/nepheline glass-ceramic prepared by melting and powder metallurgy at low temperatures. Materials Today Communications, 2017, 11, 87-93.	0.9	12
68	Calcium pre-conditioning substitution enhances viability and glucose sensitivity of pancreatic beta-cells encapsulated using polyelectrolyte multilayer coating method. Scientific Reports, 2017, 7, 43171.	1.6	6
69	Biologically Analogous Calcium Phosphate Tubes from a Chemical Garden. Langmuir, 2017, 33, 2059-2067.	1.6	21
70	Comparing mortality risk of patients with acute hip fractures admitted to a major trauma centre on a weekday or weekend. Scientific Reports, 2017, 7, 1233.	1.6	14
71	Surface Finish has a Critical Influence on Biofilm Formation and Mammalian Cell Attachment to Additively Manufactured Prosthetics. ACS Biomaterials Science and Engineering, 2017, 3, 1616-1626.	2.6	40
72	Bearings in Hip Arthroplasty: Joint Registries vs Precision Medicine. HSS Journal, 2017, 13, 20-27.	0.7	8

#	Article	IF	CITATIONS
73	Annexin-enriched osteoblast-derived vesicles act as an extracellular site of mineral nucleation within developing stem cell cultures. Scientific Reports, 2017, 7, 12639.	1.6	53
74	Geometric confinement is required for recovery and maintenance of chondrocyte phenotype in alginate. APL Bioengineering, 2017, 1, 016104.	3.3	15
75	Resistin promotes the abnormal Type I collagen phenotype of subchondral bone in obese patients with end stage hip osteoarthritis. Scientific Reports, 2017, 7, 4042.	1.6	31
76	Encapsulation and Fluidization Maintains the Viability and Glucose Sensitivity of Beta-Cells. ACS Biomaterials Science and Engineering, 2017, 3, 1750-1757.	2.6	11
77	Characterisation of a novel poly (ether ether ketone)/calcium sulphate composite for bone augmentation. Biomaterials Research, 2017, 21, 7.	3.2	10
78	Vesicles in Nature and the Laboratory: Elucidation of Their Biological Properties and Synthesis of Increasingly Complex Synthetic Vesicles. Angewandte Chemie - International Edition, 2017, 56, 3142-3160.	7.2	65
79	Defining the Balance between Regeneration and Pathological Ossification in Skeletal Muscle Following Traumatic Injury. Frontiers in Physiology, 2017, 8, 194.	1.3	23
80	Anisotropic dehydration of hydrogel surfaces. Progress in Biomaterials, 2017, 6, 157-164.	1.8	4
81	Bedside, Benchtop, and Bioengineering: Physicochemical Imaging Techniques in Biomineralization. Advanced Healthcare Materials, 2016, 5, 507-528.	3.9	7
82	Adding functionality with additive manufacturing: Fabrication of titanium-based antibiotic eluting implants. Materials Science and Engineering C, 2016, 64, 407-415.	3.8	67
83	Calcium silicate/calcium aluminate composite biocement for bone restorative application: synthesis, characterisation and <i>in vitro</i> biocompatibility. Advances in Applied Ceramics, 2016, 115, 384-390.	0.6	9
84	Enzymatically regulated demineralisation of pathological bone using sodium hexametaphosphate. Journal of Materials Chemistry B, 2016, 4, 3815-3822.	2.9	6
85	A systematic review of objective burn scar measurements. Burns and Trauma, 2016, 4, 14.	2.3	107
86	Hollow spheres as nanocomposite fillers for aerospace and automotive composite materials applications. Composites Part B: Engineering, 2016, 106, 74-80.	5.9	20
87	Visualising phase change in a brushite-based calcium phosphate ceramic. Scientific Reports, 2016, 6, 32671.	1.6	35
88	Development of tissue engineered ligaments with titanium spring reinforcement. RSC Advances, 2016, 6, 98536-98544.	1.7	1
89	Soluble silicon patterns and templates: calcium phosphate nanocrystal deposition in collagen type 1. RSC Advances, 2016, 6, 99809-99815.	1.7	4
90	Modification of gellan gum with nanocrystalline hydroxyapatite facilitates cell expansion and spontaneous osteogenesis. Biotechnology and Bioengineering, 2016, 113, 1568-1576.	1.7	13

#	Article	IF	CITATIONS
91	Development of 5-(4,6-dichlorotriazinyl) aminofluorescein (DTAF) staining for the characterisation of low acyl gellan microstructures. Food Hydrocolloids, 2016, 53, 93-97.	5.6	6
92	Fracture non-union epidemiology and treatment. Trauma, 2016, 18, 3-11.	0.2	49
93	Pulsed low-intensity ultrasound increases proliferation and extracelluar matrix production by human dermal fibroblasts in three-dimensional culture. Journal of Tissue Engineering, 2015, 6, 204173141561577.	2.3	11
94	Peptide aptamers: Novel coatings for orthopaedic implants. Materials Science and Engineering C, 2015, 54, 84-93.	3.8	16
95	Exploiting cell-mediated contraction and adhesion to structure tissues <i>in vitro</i> . Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140200.	1.8	8
96	Inorganic cements for biomedical application: calcium phosphate, calcium sulphate and calcium silicate. Advances in Applied Ceramics, 2015, 114, 65-76.	0.6	60
97	The importance of processing conditions on the biological response to apatites. Powder Technology, 2015, 284, 195-203.	2.1	3
98	The effects of cobalt–chromium–molybdenum wear debris inÂvitro on serum cytokine profiles and T cell repertoire. Biomaterials, 2015, 67, 232-239.	5.7	29
99	Identifying the Cellular Mechanisms Leading to Heterotopic Ossification. Calcified Tissue International, 2015, 97, 432-444.	1.5	33
100	In vitro degradation and in vivo resorption of dicalcium phosphate cement based grafts. Acta Biomaterialia, 2015, 26, 338-346.	4.1	72
101	Nanoscale crystallinity modulates cell proliferation on plasma sprayed surfaces. Materials Science and Engineering C, 2015, 48, 5-10.	3.8	15
102	Synthesis and <i>in vitro</i> degradation of a novel magnesium oxychloride cement. Journal of Biomedical Materials Research - Part A, 2015, 103, 194-202.	2.1	30
103	A Bio-Hybrid Tactile Sensor Incorporating Living Artificial Skin and an Impedance Sensing Array. Sensors, 2014, 14, 23781-23802.	2.1	7
104	Quantification of volume and size distribution of internalised calcium phosphate particles and their influence on cell fate. Biomaterials Science, 2014, 2, 1723-1726.	2.6	1
105	Early failure of tantalum patellar augments in the post-patellectomy knee. Current Orthopaedic Practice, 2014, 25, 472-477.	0.1	4
106	Low temperature aqueous precipitation of needle-like nanophase hydroxyapatite. Journal of Materials Science: Materials in Medicine, 2014, 25, 37-46.	1.7	22
107	Preparation and characterisation of nanophase Sr, Mg, and Zn substituted hydroxyapatite by aqueous precipitation. Materials Science and Engineering C, 2014, 35, 106-114.	3.8	147
108	Development of a synovial fluid analogue with bio-relevant rheology for wear testing of orthopaedic implants. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 32, 177-184.	1.5	23

#	Article	IF	CITATIONS
109	Effect of phosphoric acid on the properties of magnesium oxychloride cement as a biomaterial. Cement and Concrete Research, 2014, 56, 69-74.	4.6	130
110	Mechanical properties of alginate hydrogels manufactured using external gelation. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 36, 135-142.	1.5	149
111	A novel method for monitoring mineralisation in hydrogels at the engineered hard–soft tissue interface. Biomaterials Science, 2014, 2, 41-51.	2.6	17
112	Imaging the hard/soft tissue interface. Biotechnology Letters, 2014, 36, 403-415.	1.1	11
113	Poly (vinyl alcohol) modification of low acyl gellan hydrogels for applications in tissue regeneration. Food Hydrocolloids, 2014, 42, 373-377.	5.6	12
114	Combined decellularisation and dehydration improves the mechanical properties of tissue-engineered sinews. Journal of Tissue Engineering, 2014, 5, 204173141453672.	2.3	7
115	The effect of amorphous pyrophosphate on calcium phosphate cement resorption and bone generation. Biomaterials, 2013, 34, 6631-6637.	5.7	77
116	Cytocompatibility, bioactivity and mechanical strength of calcium phosphate cement reinforced with multi-walled carbon nanotubes and bovine serum albumin. Ceramics International, 2013, 39, 4975-4983.	2.3	19
117	Structural changes to resorbable calcium phosphate bioceramic aged in vitro. Colloids and Surfaces B: Biointerfaces, 2013, 111, 469-478.	2.5	11
118	Nitrogen plasma surface modification enhances cellular compatibility of aluminosilicate glass. Materials Letters, 2013, 111, 225-229.	1.3	9
119	The Implementation of Novel Collaborative Structures for the Identification and Resolution of Barriers to Pluripotent Stem Cell Translation. Stem Cells and Development, 2013, 22, 63-72.	1.1	7
120	Thiol modification of silicon-substituted hydroxyapatite nanocrystals facilitates fluorescent labelling and visualisation of cellular internalisation. Journal of Materials Chemistry B, 2013, 1, 4370.	2.9	30
121	Calcium-Alginate Hydrogel-Encapsulated Fibroblasts Provide Sustained Release of Vascular Endothelial Growth Factor. Tissue Engineering - Part A, 2013, 19, 905-914.	1.6	37
122	Active screen plasma nitriding enhances cell attachment to polymer surfaces. Applied Surface Science, 2013, 273, 787-798.	3.1	25
123	Reciprocating Root Canal Technique Induces Greater Debris Accumulation Than a Continuous Rotary Technique as Assessed by 3-Dimensional Micro–Computed Tomography. Journal of Endodontics, 2013, 39, 1067-1070.	1.4	82
124	Hydrocolloids and Medicinal Chemistry Applications. , 2013, , 365-384.		1
125	Production of nepheline/quartz ceramics from geopolymer mortars. Journal of the European Ceramic Society, 2013, 33, 251-258.	2.8	120
126	Brushite cement additives inhibit attachment to cell culture beads. Biotechnology and Bioengineering, 2013, 110, 1487-1494.	1.7	17

#	Article	IF	CITATIONS
127	Faster tissue interface analysis from Raman microscopy images using compressed factorisation. , 2013, , .		2
128	Ultrasonic Phosphate Bonding of Nanoparticles. Advanced Materials, 2013, 25, 5953-5958.	11.1	11
129	Encapsulation and Culture of Mammalian Cells Including Corneal Cells in Alginate Hydrogels. Methods in Molecular Biology, 2013, 1014, 201-210.	0.4	10
130	Monitoring Sinew Contraction During Formation of Tissue-Engineered Fibrin-Based Ligament Constructs. Tissue Engineering - Part A, 2012, 18, 1596-1607.	1.6	16
131	Synthesis and characterisation of iron substituted apatite. Advances in Applied Ceramics, 2012, 111, 466-471.	0.6	10
132	Pulsed-low intensity ultrasound enhances extracellular matrix production by fibroblasts encapsulated in alginate. Journal of Tissue Engineering, 2012, 3, 204173141245467.	2.3	14
133	Alginate Hydrogel Has a Negative Impact on in Vitro Collagen 1 Deposition by Fibroblasts. Biomacromolecules, 2012, 13, 4032-4038.	2.6	23
134	An analytical Micro CT methodology for quantifying inorganic dentine debris following internal tooth preparation. Journal of Dentistry, 2012, 40, 999-1005.	1.7	36
135	Tailoring gel modulus using dispersed nanocrystalline hydroxyapatite. Journal of Experimental Nanoscience, 2012, 7, 652-661.	1.3	10
136	Effect of processing conditions on the formation of hydroxyapatite nanoparticles. Powder Technology, 2012, 218, 109-118.	2.1	76
137	Modification of alginate degradation properties using orthosilicic acid. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 6, 181-187.	1.5	17
138	Acicular nanoparticles formed through coprecipitation of iron salts in the presence of bovine serum albumin. Journal of Materials Chemistry, 2011, 21, 13769.	6.7	1
139	Enhanced stability and local structure in biologically relevant amorphous materials containing pyrophosphate. Journal of Materials Chemistry, 2011, 21, 18783.	6.7	25
140	Effect of calcium alginate concentration on viability and proliferation of encapsulated fibroblasts. Bio-Medical Materials and Engineering, 2011, 21, 159-170.	0.4	36
141	Degradation of polysaccharide hydrogels seeded with bone marrow stromal cells. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 1157-1166.	1.5	25
142	Silver-doped calcium phosphate cements with antimicrobial activity. Acta Biomaterialia, 2011, 7, 4064-4070.	4.1	162
143	Serum Protein Controlled Nanoparticle Synthesis. Advanced Functional Materials, 2011, 21, 2968-2977.	7.8	16
144	Effect of coldâ€setting calcium―and magnesium phosphate matrices on protein expression in osteoblastic cells. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 96B, 326-332.	1.6	45

#	Article	IF	CITATIONS
145	Development and characterization of a bio-hybrid skin-like stretchable electrode. Microelectronic Engineering, 2011, 88, 1676-1680.	1.1	12
146	Hydroxyapatite formation on surface of calcium aluminate cements. Advances in Applied Ceramics, 2011, 110, 464-468.	0.6	5
147	Controlling degradation in calcium phosphate cements. Advances in Applied Ceramics, 2011, 110, 457-463.	0.6	6
148	Comparing physicochemical properties of printed and hand cast biocements designed for ligament replacement. Advances in Applied Ceramics, 2011, 110, 162-167.	0.6	14
149	Comparing the efficacy of three bioceramic matrices for the release of vancomycin hydrochloride. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 93B, 51-58.	1.6	12
150	Particle seeding enhances interconnectivity in polymeric scaffolds foamed using supercritical CO2. Acta Biomaterialia, 2010, 6, 1055-1060.	4.1	20
151	Encapsulation of fibroblasts causes accelerated alginate hydrogel degradation. Acta Biomaterialia, 2010, 6, 3649-3656.	4.1	101
152	Sustained steroid release in pulmonary inflammation model. Biomaterials, 2010, 31, 6050-6059.	5.7	5
153	Wear behavior of light-cured dental composites filled with porous glass–ceramic particles. Journal of the Mechanical Behavior of Biomedical Materials, 2010, 3, 77-84.	1.5	20
154	Factors Affecting the Longevity and Strength in an In Vitro Model of the Bone–Ligament Interface. Annals of Biomedical Engineering, 2010, 38, 2155-2166.	1.3	31
155	Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnology Letters, 2010, 32, 733-742.	1.1	364
156	A calcium phosphate cryogel for alkaline phosphatase encapsulation. Journal of Materials Science, 2010, 45, 5257-5263.	1.7	6
157	Phase composition, mechanical performance and in vitro biocompatibility of hydraulic setting calcium magnesium phosphate cement. Acta Biomaterialia, 2010, 6, 1529-1535.	4.1	80
158	Engineering an <i>In Vitro</i> Model of a Functional Ligament from Bone to Bone. Tissue Engineering - Part A, 2010, 16, 3515-3525.	1.6	76
159	Cement casting of calcium pyrophosphate based bioceramics. Advances in Applied Ceramics, 2010, 109, 291-295.	0.6	23
160	Passive and Active <i>In Vitro</i> Resorption of Calcium and Magnesium Phosphate Cements by Osteoclastic Cells. Tissue Engineering - Part A, 2010, 16, 3687-3695.	1.6	108
161	Investigation of Formulation and Process of Lyophilised Orally Disintegrating Tablet (ODT) Using Novel Amino Acid Combination. Pharmaceutics, 2010, 2, 1-17.	2.0	13
162	Alginate-Loaded Liposomes Can Protect Encapsulated Alkaline Phosphatase Functionality When Exposed to Gastric pH. Journal of Agricultural and Food Chemistry, 2010, 58, 4719-4724.	2.4	36

#	Article	lF	CITATIONS
163	Comparing Three Methods for the Synthesis of Pure Beta-Dicalcium Silicate. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	3
164	Hydrocolloids and Medicinal Chemistry Applications. , 2009, , 595-618.		0
165	Reversible mitotic and metabolic inhibition following the encapsulation of fibroblasts in alginate hydrogels. Biomaterials, 2009, 30, 6435-6443.	5.7	41
166	An alginate hydrogel matrix for the localised delivery of a fibroblast/keratinocyte co ulture. Biotechnology Journal, 2009, 4, 730-737.	1.8	60
167	A Comparison of the Efficacy of Hydoxyapatite Based Cements and Gels as Drug Delivery Matrices. Key Engineering Materials, 2008, 361-363, 327-330.	0.4	2
168	Preparation of tricalcium phosphate/calcium pyrophosphate structures via rapid prototyping. Journal of Materials Science: Materials in Medicine, 2008, 19, 1559-1563.	1.7	79
169	The influence of silica on pore diameter and distribution in PLA scaffolds produced using supercritical CO2. Journal of Materials Science: Materials in Medicine, 2008, 19, 1497-1502.	1.7	14
170	3D Powder Printing of βâ€Tricalcium Phosphate Ceramics Using Different Strategies. Advanced Engineering Materials, 2008, 10, B67.	1.6	152
171	Frozen delivery of brushite calcium phosphate cements. Acta Biomaterialia, 2008, 4, 1916-1923.	4.1	22
172	Modifying Brushite Cement Degradation Using Calcium Alginate Beads. Key Engineering Materials, 2007, 361-363, 311-314.	0.4	1
173	Dissolution of bio-active dentine matrix components by mineral trioxide aggregate. Journal of Dentistry, 2007, 35, 636-642.	1.7	219
174	Synthesis and Degradation Studies of Novel Calcium Polyphosphates. Key Engineering Materials, 2007, 361-363, 11-14.	0.4	1
175	Effects of fibre reinforcement on the mechanical properties of brushite cement. Acta Biomaterialia, 2006, 2, 95-102.	4.1	55
176	Biologically mediated resorption of brushite cement in vitro. Biomaterials, 2006, 27, 2178-2185.	5.7	81
177	In vitro biodegradation of three brushite calcium phosphate cements by a macrophage cell-line. Biomaterials, 2006, 27, 4557-4565.	5.7	94
178	Adhesion of a Novel Calcium Phosphate Cement to Cortical Bone and Several Common Biomaterials. Key Engineering Materials, 2006, 309-311, 849-852.	0.4	12
179	Antimicrobial potency of alkali ion substituted calcium phosphate cements. Biomaterials, 2005, 26, 6880-6886.	5.7	49
180	Cement Formulations in the Calcium Phosphate H2O-H3PO4-H4P2O7 System. Journal of the American Ceramic Society, 2005, 88, 3096-3103.	1.9	35

#	Article	IF	CITATIONS
181	Stearate Salts as Brushite Bone Cement Setting Retardants. Key Engineering Materials, 2005, 284-286, 19-22.	0.4	2
182	The Mechanical Properties and Microstructures of Cement Formed from Pyrophosphoric and Orthophosphoric Acids. Key Engineering Materials, 2005, 284-286, 125-128.	0.4	1
183	Temperature dependent setting kinetics and mechanical properties of β-TCP–pyrophosphoric acid bone cement. Journal of Materials Chemistry, 2005, 15, 4955.	6.7	56
184	Cements from nanocrystalline hydroxyapatite. Journal of Materials Science: Materials in Medicine, 2004, 15, 407-411.	1.7	57
185	Ionic modification of calcium phosphate cement viscosity. Part I: hypodermic injection and strength improvement of apatite cement. Biomaterials, 2004, 25, 2187-2195.	5.7	195
186	Ionic modification of calcium phosphate cement viscosity. Part II: hypodermic injection and strength improvement of brushite cement. Biomaterials, 2004, 25, 2197-2203.	5.7	155
187	High-Strength Apatitic Cement by Modification withα-Hydroxy Acid Salts. Advanced Materials, 2003, 15, 2091-2094.	11.1	93
188	Mechanical activation and cement formation of \hat{l}^2 -tricalcium phosphate. Biomaterials, 2003, 24, 4123-4131.	5.7	165
189	In vitro ageing of brushite calcium phosphate cement. Biomaterials, 2003, 24, 4133-4141.	5.7	139
190	Low Porosity CaHPO ₄ -2H ₂ O Cement. Key Engineering Materials, 2003, 254-256, 205-208.	0.4	4
191	Mechanically Induced Phase Transformation of α- and ß-Tricalcium Phosphate. Key Engineering Materials, 2003, 254-256, 277-280.	0.4	1
192	Preparation of macroporous calcium phosphate cement tissue engineering scaffold. Biomaterials, 2002, 23, 3063-3072.	5.7	195
193	A Comparison of the Efficacy of Hydoxyapatite Based Cements and Gels as Drug Delivery Matrices. Key Engineering Materials, 0, , 327-330.	0.4	1