
Igor Buzalewicz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7073016/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photolon Nanoporous Photoactive Material with Antibacterial Activity and Label-Free Noncontact Method for Free Radical Detection. International Journal of Molecular Sciences, 2022, 23, 279.	4.1	2
2	The Enhancement of Antimicrobial Photodynamic Therapy of Escherichia Coli by a Functionalized Combination of Photosensitizers: In Vitro Examination of Single Cells by Quantitative Phase Imaging. International Journal of Molecular Sciences, 2022, 23, 6137.	4.1	7
3	On the application of multi-parametric optical phenotyping of bacterial colonies for multipurpose microbiological diagnostics. Biosensors and Bioelectronics, 2021, 172, 112761.	10.1	13
4	Bacteria Single-Cell and Photosensitizer Interaction Revealed by Quantitative Phase Imaging. International Journal of Molecular Sciences, 2021, 22, 5068.	4.1	11
5	Molecular profiling of the intestinal mucosa and immune cells of the colon by multi-parametric histological techniques. Scientific Reports, 2021, 11, 11309.	3.3	7
6	The label-free optical biosensor for an automated, ultra-sensitive and highly accurate microorganisms identification. Measurement: Journal of the International Measurement Confederation, 2021, 178, 109408.	5.0	3
7	Label-Free Quantitative Phase Imaging Reveals Spatial Heterogeneity of Extracellular Vesicles in Select Colon Disorders. American Journal of Pathology, 2021, 191, 2147-2171.	3.8	11
8	Development of the Correction Algorithm to Limit the Deformation of Bacterial Colonies Diffraction Patterns Caused by Misalignment and Its Impact on the Bacteria Identification in the Proposed Optical Biosensor. Sensors, 2020, 20, 5797.	3.8	2
9	Photoactive Pore Matrix for In Situ Delivery of a Photosensitizer in Vascular Smooth Muscle Cells Selective PDT. Materials, 2019, 12, 4110.	2.9	4
10	Integrated multi-channel optical system for bacteria characterization and its potential use for monitoring of environmental bacteria. Biomedical Optics Express, 2019, 10, 1165.	2.9	10
11	Towards dosimetry for photodynamic diagnosis with the low-level dose of photosensitizer. Journal of Photochemistry and Photobiology B: Biology, 2017, 173, 333-343.	3.8	8
12	Photocatalytic and Antimicrobial Activity of Titania Nanoparticles. , 2016, , 193-208.		1
13	Washable, Photosterilisable Antimicrobial Textiles. , 2016, , 317-332.		Ο
14	Novel Perspectives on the Characterization of Species-Dependent Optical Signatures of Bacterial Colonies by Digital Holography. PLoS ONE, 2016, 11, e0150449.	2.5	11
15	Bacteria identification in an optical system with optimized diffraction pattern registration condition supported by enhanced statistical analysis. Optics Express, 2014, 22, 26312.	3.4	15
16	Photoactivated titania-based nanomaterials for potential application as cardiovascular stent coatings. Biocybernetics and Biomedical Engineering, 2014, 34, 189-197.	5.9	11
17	Identification of bacteria species by using morphological and textural properties of bacterial colonies diffraction patterns. , 2013, , .		3
18	Bacteria species identification by the statistical analysis of bacterial colonies Fresnel patterns. Optics Express. 2013, 21, 11322.	3.4	27

IGOR BUZALEWICZ

#	Article	IF	CITATIONS
19	Degeneration of Fraunhofer diffraction on bacterial colonies due to their light focusing properties examined in the digital holographic microscope system. Optics Express, 2013, 21, 26493.	3.4	8
20	Computer-based classification of bacteria species by analysis of their colonies Fresnel diffraction patterns. , 2012, , .		6
21	Bacteria Classification by Means of the Statistical Analysis of Fresnel Diffraction Patterns of Bacteria Colonies. , 2012, , .		4
22	Influence of various growth conditions on Fresnel diffraction patterns of bacteria colonies examined in the optical system with converging spherical wave illumination. Optics Express, 2011, 19, 21768.	3.4	23
23	Diffraction signature of bacteria colonies and the influence of different incubation conditions. , 2011, , .		1
24	Image processing guided analysis for estimation of bacteria colonies number by means of optical transforms. Optics Express, 2010, 18, 12992.	3.4	14
25	Evaluation of Antibacterial Agents Activity. Advances in Intelligent and Soft Computing, 2010, , 341-351.	0.2	1
26	Optical sensing of bacteria by means of light diffraction. , 2010, , .		1
27	Exploiting of optical transforms for bacteria evaluation in vitro. Proceedings of SPIE, 2009, , .	0.8	5
28	Exploiting of optical transforms for bacteria evaluation in vitro. , 2009, , .		2