Charles E Roselli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7072121/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The GnRH Antagonist Degarelix Suppresses Gonadotropin Secretion and Pituitary Sensitivity in Midgestation Sheep Fetuses. Endocrinology, 2022, 163, .	1.4	3
2	Identification of differential hypothalamic DNA methylation and gene expression associated with sexual partner preferences in rams. PLoS ONE, 2022, 17, e0263319.	1.1	3
3	Programmed for Preference: The Biology of Same-Sex Attraction in Rams. Neuroscience and Biobehavioral Reviews, 2020, 114, 12-15.	2.9	7
4	Role for Kisspeptin and Neurokinin B in Regulation of Luteinizing Hormone and Testosterone Secretion in the Fetal Sheep. Endocrinology, 2020, 161, .	1.4	5
5	In vivo magnetic resonance imaging reveals the effect of gonadal hormones on morphological and functional brain sexual dimorphisms in adult sheep. Psychoneuroendocrinology, 2019, 109, 104387.	1.3	4
6	Neuropeptide and steroid hormone mediators of neuroendocrine regulation. Journal of Neuroendocrinology, 2018, 30, e12599.	1.2	9
7	Neurobiology of gender identity and sexual orientation. Journal of Neuroendocrinology, 2018, 30, e12562.	1.2	71
8	Early prenatal androgen exposure reduces testes size and sperm concentration in sheep without altering neuroendocrine differentiation and masculine sexual behavior. Domestic Animal Endocrinology, 2018, 62, 1-9.	0.8	18
9	Cardiac myocyte proliferation and maturation near term is inhibited by early gestation maternal testosterone exposure. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H1393-H1401.	1.5	9
10	Fos expression in the olfactory pathway of high- and low-sexually performing rams exposed to urine from estrous or ovariectomized ewes. Applied Animal Behaviour Science, 2017, 186, 22-28.	0.8	7
11	Tyrosine hydroxylase in the ventral tegmental area of rams with high or low libido—A role for dopamine. Animal Reproduction Science, 2017, 187, 152-158.	0.5	6
12	Effects of Longâ€īerm Flutamide Treatment During Development on Sexual Behaviour and Hormone Responsiveness in Rams. Journal of Neuroendocrinology, 2016, 28, .	1.2	5
13	Excess Testosterone Exposure Alters Hypothalamic-Pituitary-Testicular Axis Dynamics and Gene Expression in Sheep Fetuses. Endocrinology, 2016, 157, 4234-4245.	1.4	14
14	Developmental and Functional Effects of Steroid Hormones on the Neuroendocrine Axis and Spinal Cord. Journal of Neuroendocrinology, 2016, 28, .	1.2	38
15	Effect of Testosterone on Neuronal Morphology and Neuritic Growth of Fetal Lamb Hypothalamus-Preoptic Area and Cerebral Cortex in Primary Culture. PLoS ONE, 2015, 10, e0129521.	1.1	19
16	Sex Differences in Expression of Oestrogen Receptor α but not Androgen Receptor m <scp>RNA</scp> s in the Foetal Lamb Brain. Journal of Neuroendocrinology, 2014, 26, 321-328.	1.2	14
17	Prenatal Influence of an Androgen Agonist and Antagonist on the Differentiation of the Ovine Sexually Dimorphic Nucleus in Male and Female Lamb Fetuses. Endocrinology, 2014, 155, 5000-5010.	1.4	13
18	Cell death in the central division of the medial preoptic nucleus of male and female lamb fetuses. Brain Research, 2014, 1554, 21-28.	1.1	3

#	Article	IF	CITATIONS
19	Neonatal Testosterone Exposure Protects Adult Male Rats from Stroke. Neuroendocrinology, 2013, 97, 271-282.	1.2	17
20	Rapid effects of 17β-estradiol on male copulatory behaviors are not elicited by the novel membrane active estrogenic compound STX Behavioral Neuroscience, 2013, 127, 598-605.	0.6	3
21	Ontogeny of Cytochrome P450 Aromatase mRNA Expression in the Developing Sheep Brain. Journal of Neuroendocrinology, 2012, 24, 443-452.	1.2	16
22	Localization of brain 5α-reductase messenger RNA in mice selectively bred for high chronic alcohol withdrawal severity. Alcohol, 2011, 45, 763-772.	0.8	6
23	Wired on Steroids: Sexual Differentiation of the Brain and Its Role in the Expression of Sexual Partner Preferences. Frontiers in Endocrinology, 2011, 2, 42.	1.5	15
24	The development of male-oriented behavior in rams. Frontiers in Neuroendocrinology, 2011, 32, 164-169.	2.5	33
25	Sexual differentiation of sexual behavior and its orientation. Frontiers in Neuroendocrinology, 2011, 32, 109.	2.5	5
26	Separate Critical Periods Exist for Testosterone-Induced Differentiation of the Brain and Genitals in Sheep. Endocrinology, 2011, 152, 2409-2415.	1.4	40
27	The ovine sexually dimorphic nucleus, aromatase, and sexual partner preferences in sheep. Journal of Steroid Biochemistry and Molecular Biology, 2010, 118, 252-256.	1.2	17
28	Porcine Hypothalamic Aromatase Cytochrome P450: Isoform Characterization, Sex-Dependent Activity, Regional Expression, and Regulation by Enzyme Inhibition in Neonatal Boars1. Biology of Reproduction, 2009, 81, 388-395.	1.2	24
29	Brain Aromatization: Classic Roles and New Perspectives. Seminars in Reproductive Medicine, 2009, 27, 207-217.	0.5	162
30	The volume of the ovine sexually dimorphic nucleus of the preoptic area is independent of adult testosterone concentrations. Brain Research, 2009, 1249, 113-117.	1.1	15
31	Prenatal Programming of Sexual Partner Preference: The Ram Model. Journal of Neuroendocrinology, 2009, 21, 359-364.	1.2	20
32	Age-Dependent Effects of Testosterone in Experimental Stroke. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 486-494.	2.4	52
33	The neurobiology of sexual partner preferences in rams. Hormones and Behavior, 2009, 55, 611-620.	1.0	32
34	Changes in LH secretion in response to an estradiol challenge in male- and female-oriented rams and in ewes. Reproduction, 2008, 135, 733-738.	1.1	7
35	Prolactin Expression in the Sheep Brain. Neuroendocrinology, 2008, 87, 206-215.	1.2	32
36	Reproductive Neuroendocrine Function and Behavior of Rams That Underwent Prolonged In Utero Exposure to an Aromatase Inhibitor During the Critical Period for Sexual Differentiation Biology of Reproduction, 2008, 78, 77-78.	1.2	0

#	Article	IF	CITATIONS
37	The Ovine Sexually Dimorphic Nucleus of the Medial Preoptic Area Is Organized Prenatally by Testosterone. Endocrinology, 2007, 148, 4450-4457.	1.4	52
38	The ram as a model for behavioral neuroendocrinology. Hormones and Behavior, 2007, 52, 70-77.	1.0	52
39	Effects of dietary saw palmetto on the prostate of transgenic adenocarcinoma of the mouse prostate model (TRAMP). Prostate, 2007, 67, 661-673.	1.2	22
40	Role of P450 Aromatase in Sex-Specific Astrocytic Cell Death. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 135-141.	2.4	128
41	The Effect of Aromatase Inhibition on the Sexual Differentiation of the Sheep Brain. Endocrine, 2006, 29, 501-512.	2.2	31
42	Expression of steroid hormone receptors in the fetal sheep brain during the critical period for sexual differentiation. Brain Research, 2006, 1110, 76-80.	1.1	17
43	Role of P450 aromatase in sex-specific astrocyte cell death. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S299-S299.	2.4	0
44	Saw Palmetto Extract Suppresses Insulin-Like Growth Factor-I Signaling and Induces Stress-Activated Protein Kinase/c-Jun N-Terminal Kinase Phosphorylation in Human Prostate Epithelial Cells. Endocrinology, 2004, 145, 3205-3214.	1.4	28
45	The Volume of a Sexually Dimorphic Nucleus in the Ovine Medial Preoptic Area/Anterior Hypothalamus Varies with Sexual Partner Preference. Endocrinology, 2004, 145, 478-483.	1.4	165
46	Sexual partner preference, hypothalamic morphology and aromatase in rams. Physiology and Behavior, 2004, 83, 233-245.	1.0	49
47	Role of aromatization in anticipatory and consummatory aspects of sexual behavior in male rats. Hormones and Behavior, 2003, 44, 146-151.	1.0	41
48	Estrogen Synthesis in Fetal Sheep Brain: Effect of Maternal Treatment with an Aromatase Inhibitor1. Biology of Reproduction, 2003, 68, 370-374.	1.2	31
49	Relationship of Serum Testosterone Concentrations to Mate Preferences in Rams1. Biology of Reproduction, 2002, 67, 263-268.	1.2	24
50	Hormonal influences on sexual partner preference in rams. Archives of Sexual Behavior, 2002, 31, 43-49.	1.2	15
51	Cytochrome P450 aromatase (CYP19) in the non-human primate brain: distribution, regulation, and functional significance. Journal of Steroid Biochemistry and Molecular Biology, 2001, 79, 247-253.	1.2	81
52	Distribution of Aromatase mRNA in the Ram Hypothalamus: An In Situ Hybridization Study. Journal of Neuroendocrinology, 2001, 12, 656-664.	1.2	27
53	Anatomic relationships between aromatase and androgen receptor mRNA expression in the hypothalamus and amygdala of adult male cynomolgus monkeys. Journal of Comparative Neurology, 2001, 439, 208-223.	0.9	89
54	Cytochrome P450 Aromatase in Testis and Epididymis of Male Rhesus Monkeys. Endocrine, 2001, 16, 15-20.	2.2	55

#	Article	IF	CITATIONS
55	Region-Specific Regulation of Cytochrome P450 Aromatase Messenger Ribonucleic Acid by Androgen in Brains of Male Rhesus Monkeys1. Biology of Reproduction, 2000, 62, 1818-1822.	1.2	34
56	Cellular Observations and Hormonal Correlates of Feedback Control of Luteinizing Hormone Secretion by Testosterone in Long-Term Castrated Male Rhesus Monkeys1. Biology of Reproduction, 2000, 63, 872-878.	1.2	11
57	17β-Estradiol rapidly facilitates chemoinvestigation and mounting in castrated male rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 276, R1346-R1350.	0.9	87
58	Sex Differences in Male-Typical Copulatory Behaviors in Response to Androgen and Estrogen Treatment in Rats. Neuroendocrinology, 1999, 69, 290-298.	1.2	26
59	Androgen Receptor Messenger Ribonucleic Acid in Brains and Pituitaries of Male Rhesus Monkeys: Studies on Distribution, Hormonal Control, and Relationship to Luteinizing Hormone Secretion1. Biology of Reproduction, 1999, 60, 1251-1256.	1.2	71
60	Sexual behaviour of rams: male orientation and its endocrine correlates. Journal of Reproduction and Fertility Supplement, 1999, 54, 259-69.	0.1	8
61	The effect of anabolic–androgenic steroids on aromatase activity and androgen receptor binding in the rat preoptic area. Brain Research, 1998, 792, 271-276.	1.1	53
62	Distribution and regulation of aromatase activity in the ram hypothalamus and amygdala. Brain Research, 1998, 811, 105-110.	1.1	33
63	Anatomic Distribution and Regulation of Aromatase Gene Expression in the Rat Brain1. Biology of Reproduction, 1998, 58, 79-87.	1.2	105
64	Sexual Differentiation of Aromatase Activity in the Rat Brain: Effects of Perinatal Steroid Exposure*. Endocrinology, 1998, 139, 3193-3201.	1.4	98
65	Distribution of Aromatase Cytochrome P450 Messenger Ribonucleic Acid in Adult Rhesus Monkey Brains1. Biology of Reproduction, 1997, 57, 772-777.	1.2	57
66	Sex differences in androgen-regulated expression of cytochrome P450 aromatase in the rat brain. Journal of Steroid Biochemistry and Molecular Biology, 1997, 61, 365-374.	1.2	75
67	Expression of the orphan receptor steroidogenic factor-1 mRNA in the rat medial basal hypothalamus. Molecular Brain Research, 1997, 44, 66-72.	2.5	28
68	Regulation of Aromatase Gene Expression in the Adult Rat Brain. Brain Research Bulletin, 1997, 44, 351-357.	1.4	102
69	Prenatal hormones organize sex differences of the neuroendocrine reproductive system: observations on guinea pigs and nonhuman primates. Cellular and Molecular Neurobiology, 1997, 17, 627-648.	1.7	91
70	Sex differences in androgen-regulated expression of cytochrome P450 aromatase in the rat brain. , 1997, 61, 365-365.		4
71	Sex differences in androgen-regulated expression of cytochrome P450 aromatase in the rat brain. Journal of Steroid Biochemistry and Molecular Biology, 1997, 61, 365-74.	1.2	29
72	Sex Differences in Androgen Responsiveness in the Rat Brain: Regional Differences in the Induction of Aromatase Activity. Neuroendocrinology, 1996, 64, 139-145.	1.2	53

#	Article	IF	CITATIONS
73	Sex differences in androgen-regulated cytochrome P450 aromatase mRNA in the rat brain. Endocrine, 1996, 5, 59-65.	2.2	18
74	Effect of Vorozole, an Aromatase Enzyme Inhibitor, on Sexual Behavior, Aromatase Activity and Neural Immunoreactivity. Journal of Neuroendocrinology, 1996, 8, 199-210.	1.2	33
75	Endocrine Correlates of Partner Preference Behavior in Rams1. Biology of Reproduction, 1996, 55, 120-126.	1.2	51
76	Aromatase Activity in Developing Guinea Pig Brain: Ontogeny and Effects of Exogenous Androgens1. Biology of Reproduction, 1994, 50, 436-441.	1.2	42
77	Androgens regulate aromatase cytochrome P450 messenger ribonucleic acid in rat brain Endocrinology, 1994, 135, 395-401.	1.4	185
78	Aromatase activity in the rat brain: Hormonal regulation and sex differences. Journal of Steroid Biochemistry and Molecular Biology, 1993, 44, 499-508.	1.2	175
79	Differential effects of aromatase inhibition on luteinizing hormone secretion in intact and castrated male cynomolgus macaques Journal of Clinical Endocrinology and Metabolism, 1993, 77, 1529-1534.	1.8	17
80	Age-related deficits in brain estrogen receptors and sexual behavior of male rats Behavioral Neuroscience, 1993, 107, 202-209.	0.6	26
81	Selective activation of androgen receptors in the subcortical brain of male cynomolgus macaques by physiological hormone levels and its relationship to androgen-dependent aromatase activity Journal of Clinical Endocrinology and Metabolism, 1993, 76, 1588-1593.	1.8	12
82	Age-related deficits in brain estrogen receptors and sexual behavior of male rats. Behavioral Neuroscience, 1993, 107, 202-9.	0.6	13
83	Age-related deficits in brain androgen binding and metabolism, testosterone, and sexual behavior of male rats. Neurobiology of Aging, 1991, 12, 123-130.	1.5	59
84	Synergistic Induction of Aromatase Activity in the Rat Brain by Estradiol and 5α-Dihydrotestosterone. Neuroendocrinology, 1991, 53, 79-84.	1.2	69
85	Androgen-Dependent and -Independent Aromatase Activity Coexists with Androgen Receptors in Male Guinea-Pig Brain. Journal of Neuroendocrinology, 1991, 3, 679-684.	1.2	12
86	Sex Differences in Androgen Receptors and Aromatase Activity in Microdissected Regions of the Rat Brain*. Endocrinology, 1991, 128, 1310-1316.	1.4	133
87	Androgen Receptor and 5α-Reductase Activity in the Ductuli Efferentes and Epididymis of Adult Rhesus Macaques1. Biology of Reproduction, 1991, 44, 739-745.	1.2	44
88	Testosterone Regulates Progonadotropin-Releasing Hormone Levels in the Preoptic Area and Basal Hypothalamus of the Male Rat*. Endocrinology, 1990, 126, 1080-1086.	1.4	50
89	Regulation of hypothalamic luteinizing hormone-releasing hormone levels by testosterone and estradiol in male rhesus monkeys. Brain Research, 1990, 509, 343-346.	1.1	15
90	Testosterone Regulates Aromatase Activity in Discrete Brain Areas of Male Rhesus Macaques1. Biology of Reproduction, 1989, 40, 929-934.	1.2	70

#	Article	IF	CITATIONS
91	Quantitative Distribution of Nuclear Androgen Receptors in Microdissected Areas of the Rat Brain. Neuroendocrinology, 1989, 49, 449-453.	1.2	74
92	Regulation of Androgen Metabolism and Luteinizing Hormone-Releasing Hormone Content in Discrete Hypothalamic and Limbic Areas of Male Rhesus Macaques*. Endocrinology, 1987, 120, 97-106.	1.4	70
93	Time-Course and Steroid Specificity of Aromatase Induction in Rat Hypothalamus-Preoptic Area1. Biology of Reproduction, 1987, 37, 628-633.	1.2	133
94	Genetic Evidence for Androgen-Dependent and Independent Control of Aromatase Activity in the Rat Brain*. Endocrinology, 1987, 121, 2205-2210.	1.4	118
95	Modulation of aromatase activity by testosterone in transplants of fetal rat hypothalamus-preoptic area. Developmental Brain Research, 1987, 33, 127-133.	2.1	29
96	Effects of Gonadectomy and Androgen Treatment on Aromatase Activity in the Fetal Monkey Brain1. Biology of Reproduction, 1986, 35, 106-112.	1.2	112
97	Distribution and Regulation of Aromatase Activity in the Rat Hypothalamus and Limbic System*. Endocrinology, 1985, 117, 2471-2477.	1.4	408
98	Regulation of Brain Aromatase Activity in Rats*. Endocrinology, 1984, 114, 192-200.	1.4	229
99	Inhibition of Aromatization Stimulates Luteinizing Hormone and Testosterone Secretion in Adult Male Rhesus Monkeys*. Journal of Clinical Endocrinology and Metabolism, 1984, 59, 1088-1096.	1.8	67
100	Androgens Regulate Brain Aromatase Activity in Adult Male Rats through a Receptor Mechanism*. Endocrinology, 1984, 114, 2183-2189.	1.4	181