Andrea Di Mascio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7071980/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ECN Spray G: Coupled Eulerian internal nozzle flow and Lagrangian spray simulation in flash boiling conditions. International Journal of Engine Research, 2023, 24, 1530-1544.	1.4	8
2	Numerical analysis of marine propellers low frequency noise during maneuvering. Part II: Passive and active noise control strategies. Applied Ocean Research, 2022, 125, 103201.	1.8	5
3	Numerical analysis of marine propellers low frequency noise during maneuvering. Applied Ocean Research, 2021, 106, 102461.	1.8	14
4	Smoothed particle hydrodynamics method from a large eddy simulation perspective. Generalization to a quasi-Lagrangian model. Physics of Fluids, 2021, 33, .	1.6	43
5	An immersed boundary approach for high order weighted essentially non-oscillatory schemes. Computers and Fluids, 2021, 222, 104931.	1.3	4
6	Cartesian Mesh Generation with Local Refinement for Immersed Boundary Approaches. Journal of Marine Science and Engineering, 2021, 9, 572.	1.2	11
7	Simulation of high pressure, direct injection processes of gaseous fuels by a density-based OpenFOAM solver. Physics of Fluids, 2021, 33, .	1.6	20
8	Implicit Large-Eddy Simulation of Solid Rocket Motors using the Immersed Boundary Method. , 2021, , .		1
9	SPH–FV coupling algorithm for solving multi-scale three-dimensional free-surface flows. Applied Ocean Research, 2021, 115, 102846.	1.8	16
10	Large-Eddy Simulation of Vortex Shedding and Pressure Oscillations in Solid Rocket Motors. AIAA Journal, 2020, 58, 5191-5201.	1.5	11
11	Chorin's approaches revisited: Vortex Particle Method vs Finite Volume Method. Engineering Analysis With Boundary Elements, 2019, 106, 371-388.	2.0	12
12	Coupled SPH–FV method with net vorticity and mass transfer. Journal of Computational Physics, 2018, 364, 111-136.	1.9	40
13	Modal analysis of the wake past a marine propeller. Journal of Fluid Mechanics, 2018, 855, 469-502.	1.4	42
14	Experimental and Numerical Investigation of Propeller Loads in Off-Design Conditions. Journal of Marine Science and Engineering, 2018, 6, 45.	1.2	21
15	Analysis of the flow field around a rudder in the wake of a simplified marine propeller. Journal of Fluid Mechanics, 2017, 814, 547-569.	1.4	63
16	Smoothed particle hydrodynamics method from a large eddy simulation perspective. Physics of Fluids, 2017, 29, .	1.6	58
17	Analysis of propeller bearing loads by CFD. Part I: Straight ahead and steady turning maneuvers. Ocean Engineering, 2017, 130, 241-259.	1.9	69
18	Analysis of the asymmetric behavior of propeller–rudder system of twin screw ships by CFD. Ocean Engineering, 2017, 143, 269-281.	1.9	36

#	Article	IF	CITATIONS
19	CFD analysis of the sensitivity of propeller bearing loads to stern appendages and propulsive configurations. Applied Ocean Research, 2017, 69, 205-219.	1.8	20
20	Analysis of propeller bearing loads by CFD. Part II: Transient maneuvers. Ocean Engineering, 2017, 146, 217-233.	1.9	32
21	Turning ability analysis of a fully appended twin screw vessel by CFD. Part II: Single vs. twin rudder configuration. Ocean Engineering, 2016, 117, 259-271.	1.9	45
22	Assessment of blockage effects in wind tunnel testing of wind turbines. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 154, 1-9.	1.7	16
23	Analysis of free-surface flows through energy considerations: Single-phase versus two-phase modeling. Physical Review E, 2016, 93, 053113.	0.8	29
24	Investigation and modelling of the turbulent wall pressure fluctuations on the bulbous bow of a ship. Journal of Fluids and Structures, 2016, 67, 219-240.	1.5	9
25	Application of WENO-Positivity-Preserving Schemes to Highly Under-Expanded Jets. Journal of Scientific Computing, 2016, 69, 1033-1057.	1.1	2
26	Coupling of Smoothed Particle Hydrodynamics with Finite Volume method for free-surface flows. Journal of Computational Physics, 2016, 310, 161-180.	1.9	69
27	Vortex-Sound Generation and Thrust Unsteadiness in Aft-Finocyl Solid Rocket Motor. , 2015, , .		0
28	Application of dynamic overlapping grids to the simulation of the flow around a fully-appended submarine. Mathematics and Computers in Simulation, 2015, 116, 75-88.	2.4	21
29	Turning ability analysis of a fully appended twin screw vessel by CFD. Part I: Single rudder configuration. Ocean Engineering, 2015, 105, 275-286.	1.9	51
30	Prediction of energy losses in water impacts using incompressible and weakly compressible models. Journal of Fluids and Structures, 2015, 54, 802-822.	1.5	82
31	Ship underwater noise assessment by the acoustic analogy, part III: measurements versus numerical predictions on a full-scale ship. Journal of Marine Science and Technology, 2014, 19, 125.	1.3	10
32	Numerical Simulation of 3D Unsteady Flowfield in Aft-Finocyl Solid Rocket Motor. , 2014, , .		3
33	Ship underwater noise assessment by the Acoustic Analogy part II: hydroacoustic analysis of a ship scaled model. Journal of Marine Science and Technology, 2014, 19, 52-74.	1.3	54
34	Marine propellers performance and flow-field prediction by a free-wake panel method. Journal of Hydrodynamics, 2014, 26, 780-795.	1.3	21
35	A study on the effect of the cushion pressure on a planing surface. Ocean Engineering, 2014, 91, 122-132.	1.9	0
36	Analysis of a marine propeller operating in oblique flow. Part 2: Very high incidence angles. Computers and Fluids, 2014, 92, 56-81.	1.3	63

#	Article	IF	CITATIONS
37	On the wake dynamics of a propeller operating in drift. Journal of Fluid Mechanics, 2014, 754, 263-307.	1.4	97
38	Ship underwater noise assessment by the acoustic analogy. Part I: nonlinear analysis of a marine propeller in a uniform flow. Journal of Marine Science and Technology, 2013, 18, 547-570.	1.3	89
39	Local mass non-equilibrium dynamics in multi-layered porous media: application to the drug-eluting stent. International Journal of Heat and Mass Transfer, 2013, 66, 844-854.	2.5	18
40	Analysis of the performances of a marine propeller operating in oblique flow. Computers and Fluids, 2013, 75, 86-102.	1.3	80
41	Numerical investigation of the components of calm-water resistance of a surface-effect ship. Ocean Engineering, 2013, 72, 375-385.	1.9	9
42	Simulation of turning circle by CFD: Analysis of different propeller models and their effect on manoeuvring prediction. Applied Ocean Research, 2013, 39, 1-10.	1.8	90
43	Modeling of vortex dynamics in the wake of a marine propeller. Computers and Fluids, 2013, 73, 65-79.	1.3	129
44	The Role of Mesh Generation, Adaptation, and Refinement on the Computation of Flows Featuring Strong Shocks. Modelling and Simulation in Engineering, 2012, 2012, 1-15.	0.4	6
45	Nonlinear wave resistance of a two-dimensional pressure patch moving on a free surface. Ocean Engineering, 2012, 39, 62-71.	1.9	8
46	On the NDP onset in pre-ignition transient of high performance SRMs: VEGA Z9A experience. , 2011, , .		6
47	Investigation of Twin-Screw Naval Ships Maneuverability Behavior. Journal of Ship Research, 2011, 55, 221-248.	0.5	16
48	Analysis of the interference effects for high-speed catamarans by model tests and numerical simulations. Ocean Engineering, 2011, 38, 2110-2122.	1.9	40
49	Numerical simulation of interference effects for a high-speed catamaran. Journal of Marine Science and Technology, 2011, 16, 254-269.	1.3	31
50	Analysis of the Flow Past a Fully Appended Hull with Propellers by Computational and Experimental Fluid Dynamics. Journal of Fluids Engineering, Transactions of the ASME, 2011, 133, .	0.8	22
51	Hydroacoustic characterization of a marine propeller through the acoustic analogy. , 2011, , 991-1000.		2
52	Investigation of Twin-Screw Naval Ships Maneuverability Behavior. Journal of Ship Research, 2011, 55, 221-248.	0.5	10
53	A self-adaptive oriented particles Level-Set method for tracking interfaces. Journal of Computational Physics, 2010, 229, 1353-1380.	1.9	27
54	Experimental and numerical investigations on fast catamarans interference effects. Journal of Hydrodynamics, 2010, 22, 528-533.	1.3	15

Andrea Di Mascio

#	Article	IF	CITATIONS
55	Prediction of hydrodynamic coefficients of ship hulls by high-order Godunov-type methods. Journal of Marine Science and Technology, 2009, 14, 19-29.	1.3	50
56	Analysis of the Roll Decay Motion for a Patrol Boat by URANS Simulations. , 2009, , .		1
57	Numerical Simulation of Interface Time Evolution by Oriented Lagrangian Particles and Level-Set Method. , 2009, , .		0
58	Calm-Water Resistance Prediction of a Surface-Effect Ship. , 2009, , .		2
59	Analysis of the Flow Around a Manoeuvring VLCC. , 2008, , .		1
60	Numerical Simulation of the Flow around an Array of Free-Surface Piercing Cylinders in Waves. Ship Technology Research, 2007, 54, 42-52.	1.1	1
61	Vortex Suppression Efficiency of Discontinuous Helicoidal Fins. , 2007, , 813.		5
62	On the application of the single-phase level set method to naval hydrodynamic flows. Computers and Fluids, 2007, 36, 868-886.	1.3	87
63	Numerical Simulation of the Flow Around an Array of Free-Surface Piercing Cylinders in Waves. , 2007, , .		ο
64	Numerical Investigation of the Unsteady Flow at High Reynolds Number Over a Marine Riser With Helical Strakes. , 2006, , 587.		2
65	Numerical Simulation of the Flow Around Free-Surface Piercing Bodies in Waves by an Overlapping Grids Approach. , 2006, , .		0
66	RANS simulations of a junction flow. International Journal of Computational Fluid Dynamics, 2005, 19, 179-189.	0.5	14
67	Numerical modeling of breaking waves generated by a ship?s hull. Journal of Marine Science and Technology, 2004, 9, 158-170.	1.3	12
68	Evaluation of Noise Excess for Pushing Propeller Aircraft by CFD Aeroacoustic Calculation. , 2004, , .		4
69	A local model for the simulation of two?dimensional spilling breaking waves. Journal of Marine Science and Technology, 2003, 8, 61-67.	1.3	5
70	Breaking wave at the bow of a fast displacement ship model. Journal of Marine Science and Technology, 2003, 8, 68-75.	1.3	17
71	A Model for the Simulation of Steady Spilling Breaking Waves. Journal of Ship Research, 2003, 47, 13-23.	0.5	7
72	Truncation Error Analysis in Turbulent Boundary Layers. Journal of Fluids Engineering, Transactions of the ASME, 2002, 124, 657-663.	0.8	13

#	Article	IF	CITATION
73	A Second Order Godunov-Type Scheme for Naval Hydrodynamics. , 2001, , 253-261.		17
74	A level set technique applied to unsteady free surface flows. International Journal for Numerical Methods in Fluids, 2001, 35, 281-297.	0.9	47
75	The Problem With Oscillatory Behavior in Grid Convergence Studies. Journal of Fluids Engineering, Transactions of the ASME, 2001, 123, 438-439.	0.8	22
76	Convergence of two numerical schemes for turbulent boundary layer computations. , 1998, , .		2
77	MULTIGRID ACCELERATION OF SECOND-ORDER ENO SCHEMES FROM LOW SUBSONIC TO HIGH SUPERSONIC FLOWS. International Journal for Numerical Methods in Fluids, 1996, 23, 589-606.	0.9	46
78	Viscous-inviscid coupling in free surface ship flows. International Journal for Numerical Methods in Fluids, 1995, 21, 699-722.	0.9	36
79	A two-step godunov-type scheme for the euler equations. Meccanica, 1991, 26, 179-188.	1.2	13