Feng Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/707195/publications.pdf

Version: 2024-02-01

	430874	434195
1,317	18	31
citations	h-index	g-index
103	103	798
docs citations	times ranked	citing authors
	citations 103	1,317 18 citations h-index 103 103

#	Article	IF	CITATIONS
1	Internal Relations between Crystal Structures and Intrinsic Properties of Nonstoichiometric Ba _{1+<i>x</i>} MoO ₄ Ceramics. Inorganic Chemistry, 2018, 57, 7121-7128.	4.0	73
2	Preparations, properties and applications of low-dimensional black phosphorus. Chemical Engineering Journal, 2019, 370, 120-135.	12.7	71
3	Correlation of crystal structure, dielectric properties and lattice vibration spectra of (Ba1â^'xSrx)(Zn1/3Nb2/3)O3 solid solutions. Dalton Transactions, 2011, 40, 6659.	3.3	69
4	Firstâ€Principle Calculation and Assignment for Vibrational Spectra of ⟨scp⟩⟨scp⟩⟨scp⟩⟨scp⟩⟨scp⟩⟨scp⟩⟨scp⟩⟨scp⟩	/s auls >) <scr< td=""><td>วธ&scp>O</td></scr<>	ว ธ &scp>O
5	MoS2/Ti3C2 heterostructure for efficient visible-light photocatalytic hydrogen generation. International Journal of Hydrogen Energy, 2020, 45, 6291-6301.	7.1	61
6	Crystal structure, dielectric properties, and lattice vibrational characteristics of LiNiPO ₄ ceramics sintered at different temperatures. Journal of the American Ceramic Society, 2020, 103, 2528-2539.	3.8	57
7	First-principle calculation and assignment for vibrational spectra of Ba(Mg1/3Nb2/3)O3 microwave dielectric ceramic. Journal of Applied Physics, 2014, 115 , .	2.5	54
8	Phonon characteristics, crystal structure, and intrinsic properties of a Y(Mg _{1/2} Sn _{1/2})O ₃ ceramic. RSC Advances, 2017, 7, 35305-35310.	3.6	46
9	Phonon characteristics and dielectric properties of BaMoO4 ceramic. Journal of Materiomics, 2018, 4, 383-389.	5.7	46
10	Correlation among Dielectric Properties, Vibrational Modes, and Crystal Structures in Ba[Sn _{<i>x</i>} Zn _{(1–<i>x</i>)/3} Nb _{2(1–<i>x</i>)/3}]O ₃ Solid Solutions. Journal of Physical Chemistry C, 2012, 116, 6852-6858.	3.1	34
11	Vibration Spectra and Structural Characteristics of Ba[(Zn _{1-<i>x</i>} Mg <i>_x</i> >Solid Solutions. Applied Spectroscopy Reviews, 2011, 46, 207-221.	6.7	31
12	Effects of BaWO4 additive on Raman phonon modes and structure–property relationship of Ba(Mg1/3Ta2/3)O3 microwave dielectric ceramics. Journal of Alloys and Compounds, 2015, 646, 49-55.	5.5	29
13	Vibrational modes and structural characteristics of (Ba0.3Sr0.7)[(ZnxMg1â^'x)1/3Nb2/3]O3 solid solutions. Dalton Transactions, 2011, 40, 11591.	3.3	26
14	New lowâ€ <i>ε_r</i> , temperature stable Mg ₃ B ₂ O ₆ â€Ba ₃ (VO ₄) ₂ microwave composite ceramic for 5G application. Journal of the American Ceramic Society, 2021, 104, 3818-3822.	3.8	25
15	Preparations, properties and applications of gallium oxide nanomaterials – A review. Nano Select, 2022, 3, 348-373.	3.7	23
16	Structure, Intrinsic properties and Vibrational Spectra of Pr(Mg1/2Sn1/2)O3 Ceramic Crystal. Scientific Reports, 2017, 7, 13336.	3.3	22
17	Temperatureâ€dependent dielectric and Raman spectra and microwave dielectric properties of gehleniteâ€type Ca ₂ Al ₂ SiO ₇ ceramics. International Journal of Applied Ceramic Technology, 2020, 17, 771-777.	2.1	22
18	Investigation of the crystal structure, lattice vibration and dielectric property of SrZrO ₃ ceramic. Journal of Materials Research, 2016, 31, 3249-3254.	2.6	20

#	Article	IF	CITATIONS
19	Lattice vibrational characteristics, crystal structure and dielectric properties of Ba2MgWO6 microwave dielectric ceramic. Ceramics International, 2021, 47, 17784-17788.	4.8	20
20	Lattice vibrational characteristics, crystal structures and dielectric properties of non-stoichiometric $Nd(1+)(Mg1/2Sn1/2)O3$ ceramics. Journal of Materiomics, 2020, 6, 476-484.	5 . 7	19
21	Fabrication of GaN nanowires and nanorods catalyzed with tantalum. Journal of Materials Science: Materials in Electronics, 2010, 21, 1249-1254.	2,2	18
22	Preparation of TiO2/MoSe2 heterostructure composites by a solvothermal method and their photocatalytic hydrogen production performance. International Journal of Hydrogen Energy, 2021, 46, 38636-38644.	7.1	18
23	Crystal structure characteristics, intrinsic properties, and vibrational spectra of non-stoichiometric Ca1+ <i>x</i> WO4 ceramics. Journal of Applied Physics, 2018, 124, .	2.5	17
24	Au/MoS ₂ /Ti ₃ C ₂ composite catalyst for efficient photocatalytic hydrogen evolution. CrystEngComm, 2020, 22, 3683-3691.	2.6	16
25	Crystal structure, phonon characteristic, and intrinsic properties of Sm(Mg1/2Sn1/2)O3 double perovskite ceramic. Journal of Materials Science: Materials in Electronics, 2017, 28, 14156-14162.	2.2	15
26	Lattice dynamics and phonon characteristics of complex perovskite microwave ceramics. IET Nanodielectrics, 2019, 2, 11-26.	4.1	15
27	Correlation among far-infrared reflection modes, crystal structures and dielectric properties of Ba(Zn 1/3 Nb 2/3)O 3 –CaTiO 3 ceramics. Materials Research Bulletin, 2016, 75, 115-120.	5.2	14
28	Crystal structures, dielectric properties and ferroelectricity in stuffed tridymite-type BaAl(2â^'2x)(Zn0.5Si0.5)2xO4 solid solutions. Dalton Transactions, 2019, 48, 3625-3634.	3. 3	14
29	Crystal structure, lattice vibrational characteristic, and dielectric property of Nd(Mg $1/2$ Sn $1/2$)O 3 ceramic. Materials Chemistry and Physics, 2017, 200, 9-15.	4.0	13
30	Lattice vibrational characteristics and dielectric properties of pure phase CaTiO3 ceramic. Journal of Materials Science: Materials in Electronics, 2020, 31, 18070-18076.	2.2	13
31	Synthesis and characterization of Sn-doped \hat{I}^2 -Ga2O3 nano- and micrometer particles by chemical vapor deposition. Journal of Materials Science: Materials in Electronics, 2016, 27, 942-946.	2.2	12
32	Effects of BaCu(B2O5) additives on the crystal structures and dielectric properties of CaMgGeO4 ceramics for LTCC applications. CrystEngComm, 2020, 22, 4768-4777.	2.6	12
33	Phonon characteristics and intrinsic properties of phase-pure CaMoO4 microwave dielectric ceramic. Journal of Materials Science: Materials in Electronics, 2020, 31, 5686-5691.	2.2	12
34	Lattice occupying sites and microwave dielectric properties of Mg2+–Si4+ co-doped MgxY3-xAl5-xSixO12 garnet typed ceramics. Journal of Materials Science: Materials in Electronics, 2022, 33, 2116-2124.	2.2	12
35	Investigation and theoretical calculation of the lattice vibrational spectra of BaZrO3 ceramic. Journal of Materials Science: Materials in Electronics, 2017, 28, 3467-3473.	2.2	11
36	Crystal structure and microwave dielectric properties of Mg2+-Si4+ co-modified yttrium aluminum garnet ceramics. Journal of Materials Science: Materials in Electronics, 2022, 33, 4712-4720.	2.2	11

#	Article	IF	Citations
37	Synthesis and Characterization of \hat{l}^2 -Ga2O3 Nanorod Array Clumps by Chemical Vapor Deposition. Journal of Nanoscience and Nanotechnology, 2012, 12, 8481-8486.	0.9	10
38	Lattice vibrational characteristics and structure-property relationships of $Ca(Mg1/2W1/2)O3$ microwave dielectric ceramics with different sintering temperatures. Ceramics International, 2021, , .	4.8	10
39	Correlation between vibrational modes and structural characteristics of Ba[(Zn1â^'xMgx)1/3Ta2/3]O3 solid solutions. CrystEngComm, 2012, 14, 3373.	2.6	9
40	Influence of annealing time on microstructure and dielectric properties of (Ba0.3Sr0.7)(Zn1/3Nb2/3)O3 ceramic thin films prepared by sol–gel method. Journal of Materials Science: Materials in Electronics, 2016, 27, 4607-4612.	2.2	9
41	Intrinsic dielectric properties and vibration characteristics of La(Mg1/2Sn1/2)O3 ceramic. Journal of Materiomics, 2019, 5, 127-132.	5.7	9
42	Influence of hydrothermal reaction time on crystal qualities and photoluminescence properties of \hat{l}^2 -Ga2O3 nanorods. Journal of Materials Science: Materials in Electronics, 2020, 31, 20223-20231.	2.2	9
43	Morphology and growth mechanism of multileg ZnO nanostructures by chemical vapor deposition. CrystEngComm, 2012, 14, 4173.	2.6	8
44	Morphology and growth mechanism of novel zinc oxide nanostructures synthesized by a carbon thermal evaporation process. CrystEngComm, 2012, 14, 5407.	2.6	8
45	Effect of synthesis temperature on crystal structure and phonon modes of Ba[Zn1/3(Nb0.4Ta0.6)2/3]O3 ceramics. CrystEngComm, 2012, 14, 8268.	2.6	8
46	Effects of CaTiO3 on crystal structures and dielectric properties of Ba(Zn1/3Nb2/3)O3 ceramics via X-ray diffraction and Raman spectroscopy. Journal of Materials Science: Materials in Electronics, 2014, 25, 3403-3411.	2.2	8
47	Synthesis of \hat{l}^2 -Ga2O3 nanorods by catalyzed chemical vapor deposition and their characterization. Journal of Materials Science: Materials in Electronics, 2015, 26, 1368-1373.	2.2	8
48	Effects of calcining temperature on crystal structures, dielectric properties and lattice vibrational modes of Ba(Mg1/3Ta2/3)O3 ceramics. Journal of Materials Science: Materials in Electronics, 2016, 27, 5383-5388.	2.2	8
49	Hydrothermal synthesis of BaTiO ₃ nanoparticles and role of PVA concentration in preparation. Materials Research Express, 2019, 6, 055028.	1.6	8
50	Phase pure (Ba0.3Sr0.7)(Zn1/3Nb2/3)O3 nanocrystalline particles synthesized by sol–gel technique at low temperature and their application. Journal of Sol-Gel Science and Technology, 2012, 64, 264-268.	2.4	7
51	Effect of sintering temperature on dielectric properties, vibrational modes and crystal structures of Ba[(Ni0.7Zn0.3)1/3Nb2/3]O3 ceramics. Journal of Materials Science, 2012, 47, 5438-5445.	3.7	7
52	Far infrared reflection study on structure–property relationship of Ba[Mg(1â^'x)/3ZrxTa2(1â^'x)/3]O3 ceramics. Journal of Materials Science: Materials in Electronics, 2016, 27, 800-805.	2.2	7
53	Precise prediction of dielectric property for CaZrO ₃ ceramic. Journal of Advanced Dielectrics, 2018, 08, 1850029.	2.4	7
54	Correlation between vibrational modes, crystal structures, and dielectric properties of (1 â°') Tj ETQq0 0 0 rgBT	Overlock	10 Tf 50 67 Td

4

ceramics. Journal of Materials Research, 2018, 33, 4071-4079.

54

#	Article	IF	CITATIONS
55	Photoluminescence property of Cr-doped \hat{l}^2 -Ga ₂ 0 ₃ nanorods synthesized by a hydrothermal method. CrystEngComm, 2020, 22, 7794-7799.	2.6	7
56	Lattice vibrational characteristics, crystal structure, and dielectric properties of single-phase Sr(Mg1/2Mo1/2)O3 microwave dielectric ceramic. Journal of Materials Science: Materials in Electronics, 2021, 32, 17191-17199.	2.2	7
57	Influence of reaction time on growth of GaN nanowires fabricated by CVD method. Journal of Materials Science: Materials in Electronics, 2011, 22, 1835-1840.	2.2	6
58	Morphology and Growth Mechanism of Combâ€like and Leafâ€like ZnO Nanostructures. Chemical Vapor Deposition, 2012, 18, 182-184.	1.3	6
59	Intrinsic properties and lattice vibrational characteristics of NiWO4 ceramic. Materials Chemistry and Physics, 2020, 251, 122861.	4.0	6
60	Ultraviolet photoluminescence of \hat{l}^2 -Ga2O3 microparticles synthesized by hydrothermal method. Journal of Materials Science: Materials in Electronics, 2022, 33, 13040-13050.	2.2	6
61	Effects of annealing temperatures on crystalline quality of ceramic thin films by RF-magnetron sputtering using Zn-enriched (Ba 0.3 Sr 0.7)(Zn $1/3$ Nb $2/3$)O3 as target. Journal of Materials Science: Materials in Electronics, 2012, 23, 164-168.	2.2	5
62	Growth of regular-shaped \hat{i}^2 -Ga2O3 nanorods by Ni2+-ion-catalyzed chemical vapor deposition. Journal of Materials Science: Materials in Electronics, 2014, 25, 181-184.	2.2	5
63	Correlation between crystal structures and vibration modes of Ba[(Zn1â^'x Mg x)1/3Nb2/3]O3 ceramics as a function of sintering temperatures. Journal of Materials Science: Materials in Electronics, 2014, 25, 2748-2758.	2.2	5
64	Phonon characteristics and intrinsic properties of single phase ZnWO4 ceramic. Journal of Materials Science: Materials in Electronics, 2020, 31, 6192-6198.	2.2	5
65	Effect of polyethylene glycol on BaTiO ₃ nanoparticles prepared by hydrothermal preparation. IET Nanodielectrics, 2020, 3, 69-73.	4.1	5
66	Influence of BaZrO3, MnCO3 additives on dielectric properties and microstructure of Ba(Zn1/3Nb2/3)O3 ceramics and Ba(Zn1/3Nb2/3)O3-Sr(Zn1/3Nb2/3)O3 solid solutions. Inorganic Materials, 2010, 46, 85-90.	0.8	4
67	Effect of annealing temperature on microstructure of microwave dielectric ceramic thin films fabricated by RF magnetron sputtering. Inorganic Materials, 2010, 46, 565-569.	0.8	4
68	Synthesis of GaN nanowires by CVD method: effect of reaction temperature. Journal of Experimental Nanoscience, 2011, 6, 238-247.	2.4	4
69	Inherent Properties and Phonon Characteristics of BaWO 4 Single Phase Ceramic. Physica Status Solidi (B): Basic Research, 2021, 258, 2000469.	1.5	4
70	Effects of hydrothermal temperatures on crystalline quality and photoluminescence properties of \hat{l}^2 -Ga ₂ O ₃ microspheres using ammonia as a precipitator. CrystEngComm, 2021, 23, 492-498.	2.6	4
71	Crystal structure, lattice vibrational characteristics, and dielectric properties of Ba(Mg1/2Mo1/2)O3 ceramics sintered at different temperatures. Materials Research Bulletin, 2022, 148, 111656.	5.2	4
72	Effects of oxygen partial pressures on microstructures and compositions of BaO-SrO-ZnO-Nb2O5 thin films by RF-sputtering method. Journal of Materials Science: Materials in Electronics, 2011, 22, 1483-1489.	2.2	3

#	Article	IF	CITATIONS
73	Effects of Synthesis Temperatures on Crystal Structures and Lattice Vibration Modes of (Ba0.3Sr0.7)[(Zn1–x Mg x)1/3Nb2/3]O3 Solid Solutions. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 5128-5139.	2.2	3
74	Evaluation of Dielectric Properties, Vibration Modes, and Crystal Structures in Ba[Zn($1\hat{a}^2$ x)/3Ni x/3Nb2/3]O3 Ceramics. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 381-387.	2.2	3
75	Effects of sintering temperatures on dielectric properties, vibrational modes and crystal structures in Ba[Sn0.32Zn0.68/3Nb1.36/3]O3 ceramics. Journal of Materials Science: Materials in Electronics, 2014, 25, 4129-4138.	2.2	3
76	Crystal structure characteristics, dielecric properties and vibrational spectra of Nb-rich non-stoichiometric Ba[(Zn1/3Nb2/3)1â^'xNbx]O3 ceramics. Journal of Materials Science: Materials in Electronics, 2017, 28, 11455-11463.	2.2	3
77	Lattice vibrational characteristics and structures-properties relationships of non-stoichiometric Nd[Mg0.5Sn0.5(1+x)]O3 ceramics. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	3
78	Microscopic structure, hydrogen permeability and hydrogen embrittlement resistance of Nb-Hf-Ni eutectic alloy. International Journal of Hydrogen Energy, 2021, 46, 1330-1333.	7.1	3
79	Intrinsic dielectric properties and lattice vibrational characteristics of single phase BaTiO3 ceramic. Journal of Materials Science: Materials in Electronics, 2021, 32, 24041-24049.	2.2	3
80	Liquidâ€phase preparation of BaTiO 3 nanoparticles. IET Nanodielectrics, 2020, 3, 107-115.	4.1	3
81	Lattice vibrational characteristics, crystal structures, and dielectric properties of LiMnPO4 microwave dielectric ceramics as a function of sintering temperature. Journal of Materials Science: Materials in Electronics, 2022, 33, 7708-7717.	2.2	3
82	Growth and Characterization of GaN Nanowires by NiCl2 Assisted Chemical Vapor Deposition. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 3838-3843.	2.2	2
83	Effect of the ammoniating time on microstructure and morphology of one-dimensional Mg-doped GaN nanowires catalysed with Au. Journal of Experimental Nanoscience, 2011, 6, 174-182.	2.4	2
84	Phonon characteristics, crystal structures and intrinsic properties of non-stoichiometric Ba _{1+x} WO ₄ ceramics. Materials Research Express, 2018, 5, 116304.	1.6	2
85	Crystal structures, intrinsic properties and phonon characteristics of non-stoichiometric $Nd[Mg1/2(1+x)Sn1/2]O3$ ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 2450-2458.	2.2	2
86	Correlation among crystal structures, dielectric properties, and lattice vibrations of A(Mg1/2W1/2)O3 (Aâ \in %=â \in %Ba, Sr, Ca) ceramics. Journal of Materials Science: Materials in Electronics, 0, , 1.	2.2	2
87	GaN Nanorods Catalyzed with Mo: Effect of Ammoniating Time on Microstructure, Morphology, and Optical Properties. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 2698-2702.	2.2	1
88	Synthesis, characterization and growth mechanism of ZnO nanowires on NiCl2-coated Si substrates. Journal of Materials Science: Materials in Electronics, 2011, 22, 765-770.	2.2	1
89	Effect of sputtering power on microstructure of dielectric ceramic thin films by RF magnetron sputtering method using (Ba0.3Sr0.7)(Zn1/3Nb2/3)O3 as target. Journal of Materials Science: Materials in Electronics, 2011, 22, 1290-1296.	2.2	1
90	Effect of ammoniating temperature on microstructure of one-dimensional GaN nanorods with Tb intermediate layer. Journal of Materials Science: Materials in Electronics, 2011, 22, 1366-1371.	2.2	1

#	Article	IF	CITATIONS
91	Effects of substrate temperatures on quality of BaO-SrO-ZnO-Nb2O5 thin films by RF-sputtering using Zn-enriched (Ba0.3Sr0.7)(Zn1/3Nb2/3)O3 ceramic target. Journal of Materials Science: Materials in Electronics, 2012, 23, 1094-1098.	2.2	1
92	Influence of annealing times on morphological characteristics of ceramic thin films by RF-magnetron sputtering using Zn-enriched (Ba0.3Sr0.7)(Zn1/3Nb2/3)O3 ceramic target. Journal of Materials Science: Materials in Electronics, 2012, 23, 1159-1162.	2.2	1
93	Effects of annealing temperatures on crystalline quality of silicon based (Ba0.3Sr0.7)(Zn1/3Nb2/3)O3 dielectric ceramic thin films by sol–gel process. Journal of Materials Science: Materials in Electronics, 2015, 26, 217-221.	2.2	1
94	Internal relations between crystal structures and dielectric properties of (1-x)BaWO4-xTiO2 composite ceramics. Journal of Materials Science: Materials in Electronics, 2020, 31, 19961-19973.	2.2	1
95	Research on Classification Method of Building Function Oriented to Urban Building Stock Management. Sustainability, 2022, 14, 5871.	3.2	1
96	Influence of nitridation time on microstructure, morphology and optical properties of GaN nanowires by nitridizing Ga ₂ O ₃ /Cr thin films. International Journal of Materials Research, 2011, 102, 521-524.	0.3	0
97	Effect of annealing time on microstructure and morphology of thin films by sputtering deposition with (Ba0.3Sr0.7)(Zn1/3Nb2/3)O3 target. Journal of Materials Science: Materials in Electronics, 2011, 22, 596-600.	2.2	0
98	Fabrication of thin films by sputtering deposition using (Ba0.3Sr0.7)(Zn1/3Nb2/3)O3 ceramic as target. Journal of Materials Science: Materials in Electronics, 2011, 22, 771-775.	2.2	0
99	Influence of Ammoniating Temperatures on Microstructures, Morphologies and Optical Properties of GaN/Nb Nanostructures by RF Magnetron Sputtering Technique. Materials Research Society Symposia Proceedings, 2012, 1439, 17-23.	0.1	0
100	Lattice vibrational modes, crystal structure, and dielectric properties of phase pure Ba(Mg1/2Mo1/2)O3 ceramic. Journal of Materials Science: Materials in Electronics, 2021, 32, 23412-23419.	2.2	0
101	Fabrication of dielectric thin films by sputtering deposition at different pressures with (Ba0.3Sr0.7)(Zn1/3Nb2/3)O3 ceramic as target. International Journal of Materials Research, 2011, 102, 1180-1183.	0.3	0
102	Crystal structure, lattice vibrational characteristics, and dielectric properties of phase pure LiCoPO4 ceramic. Journal of Materials Science: Materials in Electronics, 2022, 33, 15263-15271.	2.2	0