Sven Bacher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/70719/publications.pdf

Version: 2024-02-01

131 papers

22,101 citations

44069 48 h-index 26613 107 g-index

136 all docs

136 docs citations

136 times ranked 22714 citing authors

#	Article	IF	CITATIONS
1	Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 2013, 36, 27-46.	4.5	6,250
2	A proposed unified framework for biological invasions. Trends in Ecology and Evolution, 2011, 26, 333-339.	8.7	1,762
3	No saturation in the accumulation of alien species worldwide. Nature Communications, 2017, 8, 14435.	12.8	1,543
4	Alien species in a warmer world: risks and opportunities. Trends in Ecology and Evolution, 2009, 24, 686-693.	8.7	1,031
5	Scientists' warning on invasive alien species. Biological Reviews, 2020, 95, 1511-1534.	10.4	928
6	How well do we understand the impacts of alien species on ecosystem services? A panâ€European, crossâ€taxa assessment. Frontiers in Ecology and the Environment, 2010, 8, 135-144.	4.0	870
7	Grasping at the routes of biological invasions: a framework for integrating pathways into policy. Journal of Applied Ecology, 2008, 45, 403-414.	4.0	784
8	A Unified Classification of Alien Species Based on the Magnitude of their Environmental Impacts. PLoS Biology, 2014, 12, e1001850.	5.6	648
9	Disentangling the role of environmental and human pressures on biological invasions across Europe. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12157-12162.	7.1	470
10	Global rise in emerging alien species results from increased accessibility of new source pools. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2264-E2273.	7.1	416
11	Brain Size Predicts the Success of Mammal Species Introduced into Novel Environments. American Naturalist, 2008, 172, S63-S71.	2.1	382
12	Projecting the continental accumulation of alien species through to 2050. Global Change Biology, 2021, 27, 970-982.	9.5	327
13	Defining the Impact of Nonâ€Native Species. Conservation Biology, 2014, 28, 1188-1194.	4.7	308
14	Ecological Impacts of Alien Species: Quantification, Scope, Caveats, and Recommendations. BioScience, 2015, 65, 55-63.	4.9	301
15	Socioâ€economic impact classification of alien taxa (<scp>SEICAT</scp>). Methods in Ecology and Evolution, 2018, 9, 159-168.	5.2	244
16	TEASIng apart alien species risk assessments: a framework for best practices. Ecology Letters, 2012, 15, 1475-1493.	6.4	241
17	Crossing Frontiers in Tackling Pathways of Biological Invasions. BioScience, 2015, 65, 769-782.	4.9	202
18	More than "100 worst―alien species in Europe. Biological Invasions, 2018, 20, 1611-1621.	2.4	200

#	Article	IF	Citations
19	Non-natives: 141 scientists object. Nature, 2011, 475, 36-36.	27.8	197
20	Niche properties of Central European spiders: shading, moisture and the evolution of the habitat niche. Global Ecology and Biogeography, 2007, 16, 440-448.	5.8	185
21	Framework and guidelines for implementing the proposed <scp>IUCN</scp> Environmental Impact Classification for Alien Taxa (<scp>EICAT</scp>). Diversity and Distributions, 2015, 21, 1360-1363.	4.1	184
22	A vision for global monitoring of biological invasions. Biological Conservation, 2017, 213, 295-308.	4.1	178
23	Contrasting patterns in the invasions of European terrestrial and freshwater habitats by alien plants, insects and vertebrates. Global Ecology and Biogeography, 2010, 19, 317-331.	5.8	154
24	Which Taxa Are Alien? Criteria, Applications, and Uncertainties. BioScience, 2018, 68, 496-509.	4.9	153
25	Drivers of future alien species impacts: An expertâ€based assessment. Global Change Biology, 2020, 26, 4880-4893.	9.5	145
26	A Generic Impactâ€Scoring System Applied to Alien Mammals in Europe. Conservation Biology, 2010, 24, 302-311.	4.7	141
27	Developing a framework of minimum standards for the risk assessment of alien species. Journal of Applied Ecology, 2018, 55, 526-538.	4.0	141
28	Effects of vineyard management on biodiversity at three trophic levels. Biological Conservation, 2010, 143, 1521-1528.	4.1	139
29	Functional response of a generalist insect predator to one of its prey species in the field. Journal of Animal Ecology, 2002, 71, 524-531.	2.8	132
30	When are eradication campaigns successful? A test of common assumptions. Biological Invasions, 2012, 14, 1365-1378.	2.4	132
31	Developing a list of invasive alien species likely to threaten biodiversity and ecosystems in the European Union. Global Change Biology, 2019, 25, 1032-1048.	9.5	117
32	Comparing impacts of alien plants and animals in <scp>E</scp> urope using a standard scoring system. Journal of Applied Ecology, 2015, 52, 552-561.	4.0	116
33	A Conceptual Framework for Range-Expanding Species that Track Human-Induced Environmental Change. BioScience, 2019, 69, 908-919.	4.9	113
34	Which Factors Affect the Success or Failure of Eradication Campaigns against Alien Species?. PLoS ONE, 2012, 7, e48157.	2.5	112
35	A conceptual framework for prioritization of invasiveÂalien species for management accordingÂtoÂtheir impact. NeoBiota, 0, 15, 69-100.	1.0	112
36	Gaps in Border Controls Are Related to Quarantine Alien Insect Invasions in Europe. PLoS ONE, 2012, 7, e47689.	2.5	98

#	Article	IF	Citations
37	The generic impact scoring system (GISS): a standardized tool to quantify the impacts of alien species. Environmental Monitoring and Assessment, 2016, 188, 315.	2.7	88
38	Body size–climate relationships of European spiders. Journal of Biogeography, 2010, 37, 477-485.	3.0	83
39	Invasion syndromes: a systematic approach for predicting biological invasions and facilitating effective management. Biological Invasions, 2020, 22, 1801-1820.	2.4	83
40	Effects of defoliation by horse chestnut leafminer (Cameraria ohridella) on reproduction in Aesculus hippocastanum. Trees - Structure and Function, 2003, 17, 383-388.	1.9	75
41	Quarantine arthropod invasions in Europe: the role of climate, hosts and propagule pressure. Diversity and Distributions, 2014, 20, 84-94.	4.1	74
42	Leaf Vibrations and Air Movements in a Leafminer–Parasitoid System. Biological Control, 1998, 11, 147-153.	3.0	67
43	MAcroecological Framework for Invasive Aliens (MAFIA): disentangling large-scale context dependence in biological invasions. NeoBiota, 0, 62, 407-461.	1.0	66
44	Mutualistic interaction between a weevil and a rust fungus, two parasites of the weed Cirsium arvense. Oecologia, 2001, 129, 571-576.	2.0	63
45	Quantifying invasion risk: the relationship between establishment probability and founding population size. Methods in Ecology and Evolution, 2014, 5, 1255-1263.	5.2	62
46	Troubling travellers: are ecologically harmful alien species associated with particular introduction pathways?. NeoBiota, 0, 32, 1-20.	1.0	58
47	The importance of assessing positive and beneficial impacts of alien species. NeoBiota, 0, 62, 525-545.	1.0	55
48	Still not enough taxonomists: reply to Joppa et al Trends in Ecology and Evolution, 2012, 27, 65-66.	8.7	54
49	Direct and Indirect Effects of a Shoot-Base Boring Weevil and Plant Competition on the Performance of Creeping Thistle, Cirsium arvense. Biological Control, 2001, 22, 219-226.	3.0	53
50	PRATIQUE: a research project to enhance pest risk analysis techniques in the European Union. EPPO Bulletin, 2009, 39, 87-93.	0.8	52
51	Biodiversity assessments: Origin matters. PLoS Biology, 2018, 16, e2006686.	5.6	52
52	Ineffective crypsis in a crab spider: a prey community perspective. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 739-746.	2.6	51
53	An experimental test of the nature of predation: neither prey- nor ratio-dependent. Journal of Animal Ecology, 2005, 74, 86-91.	2.8	50
54	Temporal and spatial variations in the parasitoid complex of the horse chestnut leafminer during its invasion of Europe. Biological Invasions, 2010, 12, 2797-2813.	2.4	48

#	Article	IF	Citations
55	Intraspecific Trait Variation Is Correlated with Establishment Success of Alien Mammals. American Naturalist, 2015, 185, 737-746.	2.1	47
56	Spatial patterns and infestation processes in the horse chestnut leafminer Cameraria ohridella: a tale of two cities. Entomologia Experimentalis Et Applicata, 2003, 107, 25-37.	1.4	46
57	Efficiency of natural substances to protect <i>Beauveria bassiana</i> conidia from UV radiation. Pest Management Science, 2019, 75, 556-563.	3.4	45
58	Consistency of impact assessment protocols for non-native species. NeoBiota, 0, 44, 1-25.	1.0	45
59	InvasiBES: Understanding and managing the impacts of Invasive alien species on Biodiversity and Ecosystem Services. NeoBiota, 0, 50, 109-122.	1.0	45
60	Predator complex of the horse chestnut leafminer Cameraria ohridella: identification and impact assessment. Journal of Applied Entomology, 2005, 129, 353-362.	1.8	42
61	Alien Mammals of Europe. , 2009, , 119-128.		42
62	Assessing the socio-economic impacts of priority marine invasive fishes in the Mediterranean with the newly proposed SEICAT methodology. Mediterranean Marine Science, 2018, 19, 107.	1.6	41
63	Date of leaf litter removal to prevent emergence of Cameraria ohridella in the following spring. Entomologia Experimentalis Et Applicata, 2003, 107, 159-162.	1.4	39
64	Impact of flower-dwelling crab spiders on plant-pollinator mutualisms. Basic and Applied Ecology, 2010, 11, 76-82.	2.7	39
65	Mass-emergence devices: a biocontrol technique for conservation and augmentation of parasitoids. Biological Control, 2005, 32, 191-199.	3.0	38
66	Effect of Herbivore Density, Timing of Attack and Plant Community on Performance of Creeping Thistle Cirsium arvense (L.) Scop. (Asteraceae). Biocontrol Science and Technology, 2000, 10, 343-352.	1.3	37
67	Appropriate uses of EICAT protocol, data and classifications. NeoBiota, 0, 62, 193-212.	1.0	37
68	Substrate vibrations elicit defensive behaviour in leafminer pupae. Journal of Insect Physiology, 1997, 43, 945-952.	2.0	36
69	New protocols to assess the environmental impact of pests in the EPPO decisionâ€support scheme for pest risk analysis*. EPPO Bulletin, 2012, 42, 21-27.	0.8	36
70	What determines the impact of alien birds and mammals in Europe?. Biological Invasions, 2013, 15, 785-797.	2.4	35
71	FUNCTIONAL RESPONSES: A QUESTION OF ALTERNATIVE PREY AND PREDATOR DENSITY. Ecology, 2007, 88, 1300-1308.	3.2	34
72	Picky predators and the function of the faecal shield of a cassidine larva. Functional Ecology, 2005, 19, 263-272.	3.6	33

#	Article	IF	Citations
73	QUES, a new Phaseolus vulgaris genotype resistant to common bean weevils, contains the Arcelin-8 allele coding for new lectin-related variants. Theoretical and Applied Genetics, 2013, 126, 647-661.	3.6	33
74	Host plant exposure determines larval vulnerability - do prey females know?. Functional Ecology, 2005, 19, 391-395.	3.6	30
75	Increasing understanding of alien species through citizen science (Alien-CSI). Research Ideas and Outcomes, 0, 4, .	1.0	30
76	Virulence of inÂvivo and inÂvitro produced conidia of Metarhizium brunneum strains for control of wireworms. Crop Protection, 2014, 64, 137-142.	2.1	27
77	Invasion costs, impacts, and human agency: response to Sagoff 2020. Conservation Biology, 2020, 34, 1579-1582.	4.7	26
78	Improving the Environmental Impact Classification for Alien Taxa (EICAT): a summary of revisions to the framework and guidelines. NeoBiota, 0, 62, 547-567.	1.0	26
79	Parasitoid vibrations as potential releasing stimulus of evasive behaviour in a leafminer. Physiological Entomology, 1996, 21, 33-43.	1.5	25
80	Distance to native climatic niche margins explains establishment success of alien mammals. Nature Communications, 2021, 12, 2353.	12.8	25
81	Alternative futures for global biological invasions. Sustainability Science, 2021, 16, 1637-1650.	4.9	25
82	Diet choice of a predator in the wild: overabundance of prey and missed opportunities along the prey capture sequence. Ecosphere, 2011, 2, art133.	2.2	24
83	Scientific and Normative Foundations for the Valuation of Alien-Species Impacts: Thirteen Core Principles. BioScience, 0, , biw160.	4.9	24
84	Preventive application of an entomopathogenic fungus in cover crops for wireworm control. BioControl, 2017, 62, 613-623.	2.0	23
85	Bottom-Up and Top-Down Effects Influence Bruchid Beetle Individual Performance but Not Population Densities in the Field. PLoS ONE, 2013, 8, e55317.	2.5	23
86	Understanding uncertainty in the Impact Classification for Alien Taxa (ICAT) assessments. NeoBiota, 0, 62, 387-405.	1.0	22
87	Higher establishment success in specialized parasitoids: support for the existence of tradeâ€offs in the evolution of specialization. Functional Ecology, 2015, 29, 277-284.	3.6	21
88	Horizon Scanning to Predict and Prioritize Invasive Alien Species With the Potential to Threaten Human Health and Economies on Cyprus. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	21
89	Ranking alien species based on their risks of causing environmental impacts: A global assessment of alien ungulates. Global Change Biology, 2021, 27, 1003-1016.	9.5	21
90	Frameworks used in invasion science: progress and prospects. NeoBiota, 0, 62, 1-30.	1.0	20

#	Article	IF	CITATIONS
91	Dynamics of a mutualism in a multi-species context. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 1517-1522.	2.6	19
92	Consensus and controversy in the discipline of invasion science. Conservation Biology, 2022, 36, .	4.7	18
93	Differential effects of flower feeding in an insect host–parasitoid system. Basic and Applied Ecology, 2008, 9, 709-717.	2.7	16
94	Blurring Alien Introduction Pathways Risks Losing the Focus on Invasive Species Policy. Conservation Letters, 2017, 10, 265-266.	5.7	16
95	Insect-Transmitted Urediniospores of the Rust Puccinia punctiformis Cause Systemic Infections in Established Cirsium arvense Plants. Phytopathology, 2006, 96, 813-818.	2.2	15
96	Neighbourhood of host plants influences oviposition decisions of a stem-boring weevil. Basic and Applied Ecology, 2006, 7, 545-554.	2.7	15
97	Functional similarity and dissimilarity facilitate alien plant invasiveness along biotic and abiotic gradients in an arid protected area. Biological Invasions, 2020, 22, 1997-2016.	2.4	15
98	Developing in diseased host plants increases survival and fecundity in a stem-boring weevil. Entomologia Experimentalis Et Applicata, 2002, 103, 191-195.	1.4	14
99	Application of the Socio-Economic Impact Classification for Alien Taxa (SEICAT) to a global assessment of alien bird impacts. NeoBiota, 0, 62, 123-142.	1.0	14
100	Research questions to facilitate the future development of European long-term ecosystem research infrastructures: A horizon scanning exercise. Journal of Environmental Management, 2019, 250, 109479.	7.8	13
101	Species Richness-Environment Relationships of European Arthropods at Two Spatial Grains: Habitats and Countries. PLoS ONE, 2012, 7, e45875.	2.5	13
102	How to safely compost Cameraria ohridella-infested horse chestnut leaf litter on private compost heaps. Journal of Applied Entomology, 2004, 128, 707-709.	1.8	12
103	Determinants of local ant (Hymenoptera: Formicidae) species richness and activity density across Europe. Ecological Entomology, 2009, 34, 748-754.	2.2	12
104	Comparing environmental impacts of alien plants, insects and pathogens in protected riparian forests. NeoBiota, 0, 69, 1-28.	1.0	12
105	Detection of shield beetle remains in predators using a monoclonal antibody. Journal of Applied Entomology, 2004, 128, 273-278.	1.8	11
106	A Monoclonal Antibody to the Shield Beetle Cassida rubiginosa (Coleoptera, Chrysomelidae): A Tool for Predator Gut Analysis. Biological Control, 1999, 16, 299-309.	3.0	10
107	Ratio-dependent predation in a field experiment with wasps. Ecosphere, 2012, 3, art124.	2.2	10
108	Re-establishment of Protea repens after clearing invasive Acacia saligna: Consequences of soil legacy effects and a native nitrophilic weedy species. South African Journal of Botany, 2018, 116, 103-109.	2.5	10

#	Article	IF	Citations
109	Reduced caterpillar damage can benefit plant bugs in Bt cotton. Scientific Reports, 2019, 9, 2727.	3.3	9
110	Co-formulation of Beauveria bassiana with natural substances to control pollen beetles – Synergy between fungal spores and colza oil. Biological Control, 2020, 140, 104106.	3.0	9
111	Preventive field application of Metarhizium brunneum in cover crops for wireworm control. Crop Protection, 2021, 150, 105811.	2.1	9
112	Open minded and open access: introducing NeoBiota, a new peer-reviewed journal of biological invasions. NeoBiota, 0, 9, 1-12.	1.0	9
113	Water limitation prevails over energy in European diversity gradients of sheetweb spiders (Araneae:) Tj ETQq1 1 (0.784314 2.7	rg&T /Overlo
114	General trends of different inter-row vegetation management affecting vine vigor and grape quality across European vineyards. Agriculture, Ecosystems and Environment, 2022, 338, 108073.	5.3	8
115	Are species more harmful in their native, neonative or alien range? Insights from a global analysis of bark beetles. Diversity and Distributions, 2022, 28, 1832-1849.	4.1	8
116	Establishing systemic rust infections in <i>Cirsium arvense</i> in the field. Biocontrol Science and Technology, 2008, 18, 209-214.	1.3	7
117	Biodiversity effects on grape quality depend on variety and management intensity. Journal of Applied Ecology, 2021, 58, 1442-1454.	4.0	6
118	A simple inÂvitro method to study interactions between soil insects, entomopathogenic fungi, and plant extracts. Entomologia Experimentalis Et Applicata, 2017, 163, 315-327.	1.4	5
119	A local risk map using field observations of the Asian longhorned beetle to optimize monitoring activities. Journal of Applied Entomology, 2018, 142, 578-588.	1.8	5
120	Distinct Biogeographic Phenomena Require a Specific Terminology: A Reply to Wilson and Sagoff. BioScience, 2020, 70, 112-114.	4.9	5
121	Addressing a critique of the TEASI framework for invasive species risk assessment. Ecology Letters, 2013, 16, 1415-e6.	6.4	4
122	Standard non-target tests for risk assessment of plant protection products are unsuitable for entomopathogenic fungiâ€"a proposal for a new protocol. Journal of Soils and Sediments, 2021, 21, 2357-2368.	3.0	3
123	10.1023/A:1020367721299., 2011,,.		2
124	Ökologie kompakt. , 2012, , .		2
125	Two Shoot-Miners, <i>Ceutorhynchus alliariae </i> and <i>Ceutorhynchus roberti </i> , Sharing the Same Fundamental Niche on Garlic Mustard. Environmental Entomology, 2012, 41, 1086-1096.	1.4	1
126	Open minded and open access: introducing NeoBiota, a new peer-reviewed journal of biological invasions. NeoBiota, 0, 9, 1-12.	1.0	1

#	Article	IF	CITATIONS
127	Ökologie kompakt. , 2017, , .		1
128	Großlebensräme der Erde. , 2012, , 257-274.		0
129	Wechselwirkungen zwischen verschiedenen Arten. , 2012, , 97-172.		0
130	Independent introductions of hedgehogs to the North and South Island of New Zealand. New Zealand Journal of Ecology, 2020, 44, .	1.1	0
131	Influence of Wireworm Diet on its Susceptibility to and Control with the Entomopathogenic Fungus <i>Metarhizium Brunneum</i> in Laboratory and Field Settings. SSRN Electronic Journal, 0, ,	0.4	0