Cristian Staii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7071727/publications.pdf

Version: 2024-02-01

304743 233421 2,047 49 22 45 h-index citations g-index papers 49 49 49 3191 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Feedback-controlled dynamics of neuronal cells on directional surfaces. Biophysical Journal, 2022, 121, 769-781.	0.5	4
2	Cytoprotection of Human Progenitor and Stem Cells through Encapsulation in Alginate Templated, Dual Crosslinked Silk and Silk–Gelatin Composite Hydrogel Microbeads. Advanced Healthcare Materials, 2022, 11, .	7.6	15
3	Neuronal Growth and Formation of Neuron Networks on Directional Surfaces. Biomimetics, 2021, 6, 41.	3.3	6
4	Axonal growth on surfaces with periodic geometrical patterns. PLoS ONE, 2021, 16, e0257659.	2. 5	4
5	Quantitative characterization of dielectric properties of nanoparticles using electrostatic force microscopy. AIP Advances, 2020, 10, 115118.	1.3	4
6	Quantitative characterization of dielectric properties of polymer fibers and polymer composites using electrostatic force microscopy. Nanotechnology, 2020, 31, 505713.	2.6	3
7	Variations of Elastic Modulus and Cell Volume with Temperature for Cortical Neurons. Langmuir, 2019, 35, 10965-10976.	3. 5	21
8	Anomalous diffusion for neuronal growth on surfaces with controlled geometries. PLoS ONE, 2019, 14, e0216181.	2. 5	16
9	Role of geometrical cues in neuronal growth. Physical Review E, 2019, 99, 022408.	2.1	13
10	Neuron dynamics on directional surfaces. Soft Matter, 2019, 15, 9931-9941.	2.7	9
11	Cytoskeletal Dynamics of Neurons Measured by Combined Fluorescence and Atomic Force Microscopy. MRS Advances, 2018, 3, 1463-1468.	0.9	2
12	Neuronal dynamics on patterned substrates measured by fluorescence microscopy. MRS Communications, 2018, 8, 487-492.	1.8	2
13	Silk-ionomer and silk-tropoelastin hydrogels as charged three-dimensional culture platforms for the regulation of hMSC response. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2549-2564.	2.7	6
14	A new path to platelet production through matrix sensing. Haematologica, 2017, 102, 1150-1160.	3 . 5	51
15	Effect of Terminal Modification on the Molecular Assembly and Mechanical Properties of Proteinâ€Based Block Copolymers. Macromolecular Bioscience, 2017, 17, 1700095.	4.1	10
16	Stimuliâ€Responsive Freeâ€Standing Layerâ€Byâ€Layer Films. Advanced Materials, 2016, 28, 715-721.	21.0	36
17	Load Rate and Temperature Dependent Mechanical Properties of the Cortical Neuron and Its Pericellular Layer Measured by Atomic Force Microscopy. Langmuir, 2016, 32, 1111-1119.	3.5	31
18	Predictive modelling-based design and experiments for synthesis and spinning of bioinspired silk fibres. Nature Communications, 2015, 6, 6892.	12.8	118

#	Article	IF	Citations
19	Thiophene-Based Conjugated Polymers with Photolabile Solubilizing Side Chains. Macromolecules, 2015, 48, 959-966.	4.8	51
20	Quantitative analysis of mechanical and electrostatic properties of poly(lactic) acid fibers and poly(lactic) acidâ€"carbon nanotube composites using atomic force microscopy. Nanotechnology, 2015, 26, 105702.	2.6	25
21	Programmable 3D silk bone marrow niche for platelet generation ex vivo and modeling of megakaryopoiesis pathologies. Blood, 2015, 125, 2254-2264.	1.4	140
22	Quantification of Axonal Outgrowth on a Surface with Asymmetric Topography. Materials Research Society Symposia Proceedings, 2014, 1621, 243-248.	0.1	0
23	Semi-automatic quantification of neurite fasciculation in high-density neurite images by the neurite directional distribution analysis (NDDA). Journal of Neuroscience Methods, 2014, 228, 100-109.	2.5	3
24	Effect of sequence features on assembly of spider silk block copolymers. Journal of Structural Biology, 2014, 186, 412-419.	2.8	27
25	Effects of Surface Asymmetry on Neuronal Growth. PLoS ONE, 2014, 9, e106709.	2.5	26
26	Neuronal growth as diffusion in an effective potential. Physical Review E, 2013, 88, 042707.	2.1	14
27	Silk Hydrogels as Soft Substrates for Neural Tissue Engineering. Advanced Functional Materials, 2013, 23, 5140-5149.	14.9	157
28	Sequence–Structure–Property Relationships of Recombinant Spider Silk Proteins: Integration of Biopolymer Design, Processing, and Modeling. Advanced Functional Materials, 2013, 23, 241-253.	14.9	61
29	Kelvin probe microscopy and electronic transport measurements in reduced graphene oxide chemical sensors. Nanotechnology, 2013, 24, 245502.	2.6	37
30	Neuron Biomechanics Probed by Atomic Force Microscopy. International Journal of Molecular Sciences, 2013, 14, 16124-16140.	4.1	69
31	Controlling neuronal growth and connectivity via directed self-assembly of proteins. Materials Research Society Symposia Proceedings, 2013, 1498, 207-212.	0.1	0
32	Temperature response of the neuronal cytoskeleton mapped via atomic force and fluorescence microscopy. Physical Biology, 2013, 10, 056002.	1.8	30
33	Electronic Transport and Doping Effects in Reduced Graphene Oxide Measured by Scanning Probe Microscopy. Materials Research Society Symposia Proceedings, 2013, 1505, 1.	0.1	1
34	High Resolution Mapping of Cytoskeletal Dynamics in Neurons via Combined Atomic Force Microscopy and Fluorescence Microscopy. Materials Research Society Symposia Proceedings, 2013, 1527, 1.	0.1	1
35	Young's Modulus of Cortical and P19 Derived Neurons Measured by Atomic Force Microscopy. Materials Research Society Symposia Proceedings, 2012, 1420, 7.	0.1	8
36	Elasticity Maps of Living Neurons Measured by Combined Fluorescence and Atomic Force Microscopy. Biophysical Journal, 2012, 103, 868-877.	0.5	147

#	Article	IF	Citations
37	Neuronal alignment on asymmetric textured surfaces. Applied Physics Letters, 2012, 101, 143701.	3.3	27
38	Distance Dependence of Neuronal Growth on Nanopatterned Gold Surfaces. Langmuir, 2011, 27, 233-239.	3.5	28
39	Controlling Neuronal Growth on Au Surfaces by Directed Assembly of Proteins. Materials Research Society Symposia Proceedings, 2009, 1236, 1.	0.1	1
40	Positioning and guidance of neurons on gold surfaces by directed assembly of proteins using Atomic Force Microscopy. Biomaterials, 2009, 30, 3397-3404.	11.4	45
41	Electrostatic Force Microscopy of Nanofibers and Carbon Nanotubes: Quantitative Analysis Using Theory and Experiment. Materials Research Society Symposia Proceedings, 2007, 1025, 1.	0.1	1
42	DNA-decorated carbon nanotubes for chemical sensing. Physica Status Solidi (B): Basic Research, 2006, 243, 3252-3256.	1.5	24
43	Single Stranded DNA Decorated Carbon Nanotube Transistors for Chemical Sensing. Materials Research Society Symposia Proceedings, 2005, 900, 1.	0.1	0
44	High Frequency Scanning Gate Microscopy and Local Memory Effect of Carbon Nanotube Transistors. Nano Letters, 2005, 5, 893-896.	9.1	12
45	DNA-Decorated Carbon Nanotubes for Chemical Sensing. Nano Letters, 2005, 5, 1774-1778.	9.1	471
46	Scanning Conductance Microscopy of Carbon Nanotubes and Polyethylene Oxide Nanofibers. AIP Conference Proceedings, 2004, , .	0.4	0
47	Scanning Conductance Microscopy and High Frequency Scanning Gate Microscopy of Carbon Nanotubes and Polyethylene based Nanofibers. Materials Research Society Symposia Proceedings, 2004, 838, 229.	0.1	1
48	Quantitative Analysis of Scanning Conductance Microscopy. Nano Letters, 2004, 4, 859-862.	9.1	93
49	Fabrication and electrical characterization of polyaniline-based nanofibers with diameter below 30 nm. Applied Physics Letters, 2003, 83, 3800-3802.	3.3	196