## **Guillaume Andrieu**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7071485/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | "Virtual―Signal Integrity Test on Shielded/Unshielded Twisted-Wire Pairs Using the Bulk Current<br>Injection Setup. IEEE Transactions on Electromagnetic Compatibility, 2021, 63, 1357-1365.                                          | 1.4 | 4         |
| 2  | On the Possible Benefits of Inserting Metallic Diffractors to Improve Low Frequency Performance of Reverberation Chambers. IEEE Transactions on Electromagnetic Compatibility, 2021, 63, 304-307.                                     | 1.4 | 2         |
| 3  | Risk to Declare EMC Compliant a Faulty EUT During Radiated Susceptibility Tests Performed in an<br>Undermoded Reverberation Chamber. IEEE Transactions on Electromagnetic Compatibility, 2021, 63,<br>365-374.                        | 1.4 | 1         |
| 4  | Remote Laboratory Implementation for the Study of Transmission Lines. , 2021, , .                                                                                                                                                     |     | 2         |
| 5  | Performance Comparison and Critical Examination of the Most Popular Stirring Techniques in<br>Reverberation Chambers Using the "Well-Stirred―Condition Method. IEEE Transactions on<br>Electromagnetic Compatibility, 2020, 62, 3-15. | 1.4 | 16        |
| 6  | On the Risk to Declare EMC Compliant a Faulty EUT During Radiated Susceptibility Tests in<br>Reverberation Chambers. IEEE Transactions on Electromagnetic Compatibility, 2020, 62, 645-653.                                           | 1.4 | 5         |
| 7  | Complete Framework for Frequency and Time-Domain Performance Assessment of Vibrating Intrinsic<br>Reverberation Chambers. IEEE Transactions on Electromagnetic Compatibility, 2020, 62, 1911-1920.                                    | 1.4 | 15        |
| 8  | Antenna Radiation Pattern Measurement in a Reverberating Enclosure Using the Time-Gating<br>Technique. IEEE Antennas and Wireless Propagation Letters, 2020, 19, 183-187.                                                             | 2.4 | 17        |
| 9  | "Virtual" Signal Integrity Test on High-Speed Ethernet Cables in a Reverberation Chamber. , 2020, , .                                                                                                                                 |     | 0         |
| 10 | Application of the Power Balance Method in a System of Nested and Oversized Cavities. , 2019, , .                                                                                                                                     |     | 0         |
| 11 | The e-LIVES Project: e-Engineering Where and When Students Need. , 2019, , .                                                                                                                                                          |     | 1         |
| 12 | Improvement of Performances of a Reverberation Chamber with Fixed Metallic Spheres Using the<br>"Well-Stirred" Condition Method. , 2019, , .                                                                                          |     | 1         |
| 13 | e-Engineering: Remote Labs in an Electronics and Optics e-Learning for Embedded Systems Course. ,<br>2019, , .                                                                                                                        |     | 1         |
| 14 | Doppler Spectrum Analysis for the Prediction of Rotating Mode Stirrer Performances in<br>Reverberation Chamber. IEEE Transactions on Electromagnetic Compatibility, 2019, 61, 1408-1413.                                              | 1.4 | 4         |
| 15 | Fast and Accurate Assessment of the "Well Stirred Condition―of a Reverberation Chamber From \$S_{11}\$ Measurements. IEEE Transactions on Electromagnetic Compatibility, 2019, 61, 974-982.                                           | 1.4 | 29        |
| 16 | e-LIVES – Extending e-Engineering Along the South and Eastern Mediterranean Basin. Lecture Notes in<br>Networks and Systems, 2019, , 244-251.                                                                                         | 0.5 | 3         |
| 17 | Wideband Optimization Process for EM Characterization of Low-Losses Dielectric and Dispersive<br>Materials in a Quasi-TEM Cell. IEEE Transactions on Instrumentation and Measurement, 2018, 67,<br>866-875.                           | 2.4 | 3         |
| 18 | Transfer Impedance Measurement of Shielded Cables Through Localized Injection. IEEE Transactions on Electromagnetic Compatibility, 2018, 60, 1018-1021.                                                                               | 1.4 | 7         |

Guillaume Andrieu

| #  | Article                                                                                                                                                                                                                         | lF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Radiated Susceptibility Tests in Thermal Vacuum Chambers Working as Reverberation Chambers. , 2018, ,                                                                                                                           |     | 3         |
| 20 | Monostatic Radar Cross-Section Estimation of Canonical Targets in Reverberating Room Using<br>Time-Gating Technique. , 2018, , .                                                                                                |     | 12        |
| 21 | New Strategy for Remote Practical Works in Power Electronics for Embedded Systems: Application in EOLES European Project. Advances in Intelligent Systems and Computing, 2018, , 149-158.                                       | 0.5 | 2         |
| 22 | Experimental validation of a statistical model of a wiring system in a reverberant room. , 2017, , .                                                                                                                            |     | 0         |
| 23 | Calibration of reverberation chambers from S <inf>11</inf> measurements. , 2017, , .                                                                                                                                            |     | 1         |
| 24 | Analytical model for the assessment of Doppler spectrum of rotating objects. , 2017, , .                                                                                                                                        |     | 2         |
| 25 | Calibration of reverberation chambers from S <inf>21</inf> measurements. , 2017, , .                                                                                                                                            |     | 4         |
| 26 | Implementation and Validation of a new Strategy of Online Practical Works of Power Electronics for Embedded Systems. International Journal of Online Engineering, 2017, 13, 29.                                                 | 0.5 | 0         |
| 27 | Multi-User and Real-Time Flexible Remote Laboratory Architecture for Collaborative and Cooperative Pedagogical Scenarios. International Journal of Online Engineering, 2016, 12, 33.                                            | 0.5 | 4         |
| 28 | Investigations on the use of a stripline injection probe for BCI-like tests on multiconductor transmission lines. , 2016, , .                                                                                                   |     | 0         |
| 29 | High-Frequency BCI-Like Tests With a Stripline Injection Probe. IEEE Transactions on Electromagnetic Compatibility, 2016, 58, 393-400.                                                                                          | 1.4 | 11        |
| 30 | COMBINING E-TECHNOLOGIES & amp; E-PEDAGOGIES TO CREATE ONLINE UNDERGRADUATE COURSES IN ENGINEERING – AN EXAMPLE OF A SUCCESSFUL EXPERIENCE. EDULEARN Proceedings, 2016, , .                                                     | 0.0 | 3         |
| 31 | Stripline injection cell for high frequency BCI tests. , 2015, , .                                                                                                                                                              |     | 3         |
| 32 | EOLES projectteaching unit experiences. , 2015, , .                                                                                                                                                                             |     | 0         |
| 33 | An Efficient Analytical Method for Electromagnetic Field to Transmission Line Coupling Into a<br>Rectangular Enclosure Excited by an Internal Source. IEEE Transactions on Electromagnetic<br>Compatibility, 2015, 57, 565-573. | 1.4 | 25        |
| 34 | EOLES course the first accredited on-line degree course in electronics and optics for embedded systems. , 2015, , .                                                                                                             |     | 7         |
| 35 | Actual antenna radiation pattern measurements in reverberation chamber. , 2014, , .                                                                                                                                             |     | 0         |
| 36 | Time-domain assessment of the unstirred rays in reverberation chambers. , 2014, , .                                                                                                                                             |     | 0         |

Guillaume Andrieu

| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The EOLES project remote labs across the mediterranean. , 2014, , .                                                                                                                                               |     | 7         |
| 38 | On the Low-Frequency Optimization of Reverberation Chambers. IEEE Transactions on Electromagnetic Compatibility, 2014, 56, 266-275.                                                                               | 1.4 | 45        |
| 39 | Improvements of a Numerical Methodology for Computing Near-Field Parasitic Electromagnetic<br>Emissions of Solar Panels. IEEE Transactions on Electromagnetic Compatibility, 2014, 56, 792-799.                   | 1.4 | 2         |
| 40 | The EOLES project. , 2014, , .                                                                                                                                                                                    |     | 6         |
| 41 | On the Application of the "Equivalent Cable Bundle Method―to Cable Bundles in Presence of Complex<br>Ground Structures. IEEE Transactions on Electromagnetic Compatibility, 2013, 55, 798-801.                    | 1.4 | 5         |
| 42 | Investigations about the Use of Aeronautical Metallic Halls Containing Apertures as Mode-Stirred Reverberation Chambers. IEEE Transactions on Electromagnetic Compatibility, 2013, 55, 13-20.                     | 1.4 | 12        |
| 43 | Determination of the "Quasi-Ideal Reverberation Chamber Minimal Frequency"<br>according to loading. , 2013, , .                                                                                                   |     | 2         |
| 44 | Influence of a stirrer on the cavity modes within a reverberation chamber. , 2012, , .                                                                                                                            |     | 3         |
| 45 | Homogenization of Composite Panels From a Near-Field Magnetic Shielding Effectiveness<br>Measurement. IEEE Transactions on Electromagnetic Compatibility, 2012, 54, 700-703.                                      | 1.4 | 20        |
| 46 | Low-frequency characterization of composite panels from a near-field magnetic shielding effectiveness measurement. , 2011, , .                                                                                    |     | 4         |
| 47 | Influence of apertures on the electromagnetic field behaviour within aeronautical metallic halls used as reverberation chambers. , 2011, , .                                                                      |     | 0         |
| 48 | Extension of the "Equivalent Cable Bundle Method―for Modeling Electromagnetic Emissions of<br>Complex Cable Bundles. IEEE Transactions on Electromagnetic Compatibility, 2009, 51, 108-118.                       | 1.4 | 39        |
| 49 | A Numerical Methodology for the Prediction of the Near-Field Parasitic Electromagnetic Emissions of<br>Solar Panels. IEEE Transactions on Electromagnetic Compatibility, 2009, 51, 919-927.                       | 1.4 | 5         |
| 50 | A reduction modeling method to assess the electromagnetic emission of multiconductor transmission lines. Comptes Rendus Physique, 2009, 10, 83-90.                                                                | 0.3 | 1         |
| 51 | Discussions about Automotive Application of the "Equivalent Cable Bundle Method" in the High Frequency Domain. , 2009, , .                                                                                        |     | 2         |
| 52 | Multiconductor Reduction Technique for Modeling Common-Mode Currents on Cable Bundles at<br>High Frequency for Automotive Applications. IEEE Transactions on Electromagnetic Compatibility,<br>2008, 50, 175-184. | 1.4 | 55        |
| 53 | Susceptibility of printed circuit boards in complex electromagnetic environment. , 2008, , .                                                                                                                      |     | 3         |