Mercedes VÃ;zquez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7071109/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Silver nanocolloid generation using dynamic Laser Ablation Synthesis in Solution system and drop-casting. Nano Structures Nano Objects, 2022, 29, 100841.	1.9	14
2	Digitisation of metal AM for part microstructure and property control. International Journal of Material Forming, 2022, 15, 30.	0.9	6
3	Additive-free silver nanoparticle ink development using flow-based Laser Ablation Synthesis in Solution and Aerosol Jet printing. Chemical Engineering Journal, 2022, 449, 137817.	6.6	13
4	Electrochemical and chronoamperometry assessment of nano‑gold sensor surfaces produced via novel laser fabrication methods. Journal of Electroanalytical Chemistry, 2021, 880, 114813.	1.9	2
5	Use of some cost-effective technologies for a routine clinical pathology laboratory. Lab on A Chip, 2021, 21, 4330-4351.	3.1	8
6	Multi-Material Production of 4D Shape Memory Polymer Composites. , 2021, , 879-894.		4
7	Real-time monitoring and control for high-efficiency autonomous laser fabrication of silicon nanoparticle colloids. International Journal of Advanced Manufacturing Technology, 2021, 114, 291-304.	1.5	12
8	MXene materials based printed flexible devices for healthcare, biomedical and energy storage applications. Materials Today, 2021, 43, 99-131.	8.3	107
9	Additive Manufacturing of Bone Scaffolds Using PolyJet and Stereolithography Techniques. Applied Sciences (Switzerland), 2021, 11, 7336.	1.3	12
10	Review of Materials and Fabrication Methods for Flexible Nano and Micro-Scale Physical and Chemical Property Sensors. Applied Sciences (Switzerland), 2021, 11, 8563.	1.3	17
11	Magnesium Nanoparticle Synthesis from Powders via Pulsed Laser Ablation in Liquid for Nanocolloid Production. Applied Sciences (Switzerland), 2021, 11, 10974.	1.3	15
12	Advanced materials of printed wearables for physiological parameter monitoring. Materials Today, 2020, 32, 147-177.	8.3	110
13	Ti6Al4V functionally graded material via high power and high speed laser surface modification. Surface and Coatings Technology, 2020, 398, 126085.	2.2	14
14	Portable low-cost open-source wireless spectrophotometer for fast and reliable measurements. HardwareX, 2020, 7, e00108.	1.1	42
15	Enhanced organic species identification via laser structuring of carbon monolithic surfaces. Applied Surface Science, 2019, 493, 829-837.	3.1	0
16	Chemical surface modification of polyethylene terephthalate (PET) films using extreme ultraviolet. AIP Conference Proceedings, 2019, , .	0.3	0
17	Taguchi method modelling of Nd:YAG laser ablation of microchannels on cyclic olefin polymer film. Optics and Laser Technology, 2018, 106, 265-271.	2.2	8
18	Advanced Characterisation Techniques for Nanostructures. , 2018, , 55-93.		2

Mercedes VÃizquez

#	Article	IF	CITATIONS
19	Modelling and optimisation of single-step laser-based gold nanostructure deposition with tunable optical properties. Optics and Laser Technology, 2018, 108, 295-305.	2.2	3
20	Nanoparticle functionalized laser patterned substrate: an innovative route towards low cost biomimetic platforms. RSC Advances, 2017, 7, 8060-8069.	1.7	9
21	New strategies for stationary phase integration within centrifugal microfluidic platforms for applications in sample preparation and pre-concentration. Analytical Methods, 2017, 9, 1998-2006.	1.3	13
22	Physical integrity of 3D printed parts for use as embossing tools. Advances in Materials and Processing Technologies, 2017, 3, 308-317.	0.8	4
23	An evaluation of components manufactured from a range of materials, fabricated using PolyJet technology. Advances in Materials and Processing Technologies, 2017, 3, 318-329.	0.8	16
24	Pulsed laser deposition of plasmonic nanostructured gold on flexible transparent polymers at atmospheric pressure. Journal Physics D: Applied Physics, 2017, 50, 245303.	1.3	19
25	Surface roughness control by extreme ultraviolet (EUV) radiation. AIP Conference Proceedings, 2017, ,	0.3	4
26	Methacrylate Polymer Monoliths for Separation Applications. Materials, 2016, 9, 446.	1.3	23
27	Laser-assisted synthesis of ultrapure nanostructures for biological sensing applications. Proceedings of SPIE, 2016, , .	0.8	2
28	Microchannel fabrication on cyclic olefin polymer substrates via 1064 nm Nd:YAG laser ablation. Applied Surface Science, 2016, 387, 603-608.	3.1	33
29	Rapid Prototyped Biomimetic Antifouling Surfaces for Marine Applications. Materials Today: Proceedings, 2016, 3, 527-532.	0.9	16
30	Extreme Ultraviolet Surface Modification of Polyethylene Terephthalate (PET) for Surface Structuring and Wettability Control. Acta Physica Polonica A, 2016, 129, 241-243.	0.2	17
31	<i>In vitro</i> fibroblast and pre-osteoblastic cellular responses on laser surface modified Ti–6Al–4V. Biomedical Materials (Bristol), 2015, 10, 015007.	1.7	35
32	Laser assisted synthesis of carbon nanoparticles with controlled viscosities for printing applications. Journal of Colloid and Interface Science, 2015, 447, 263-268.	5.0	52
33	Laser micro-engineering of functionalised cyclic olefin polymers for microfluidic applications. Proceedings of SPIE, 2015, , .	0.8	3
34	Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications. Biomicrofluidics, 2014, 8, 052112.	1.2	114
35	Permeability of rapid prototyped artificial bone scaffold structures. Journal of Biomedical Materials Research - Part A, 2014, 102, 4127-4135.	2.1	32
36	Surface modification of polymers for biocompatibility via exposure to extreme ultraviolet radiation. Journal of Biomedical Materials Research - Part A, 2014, 102, 3298-3310.	2.1	71

Mercedes VÃizquez

#	Article	IF	CITATIONS
37	Developments of Laser Fabrication Methods for Lab-on-a-Chip Microfluidic Multisensing Devices. , 2014, , 447-458.		6
38	Liquid Phase – Pulsed Laser Ablation: A route to fabricate different carbon nanostructures. Applied Surface Science, 2014, 302, 141-144.	3.1	48
39	Fast Fabrication Process of Microfluidic Devices Based on Cyclic Olefin Copolymer. Materials and Manufacturing Processes, 2014, 29, 93-99.	2.7	29
40	Focussed ion beam serial sectioning and imaging of monolithic materials for 3D reconstruction and morphological parameter evaluation. Analyst, The, 2014, 139, 99-104.	1.7	9
41	Adsorption and Desorption of Methylene Blue on Porous Carbon Monoliths and Nanocrystalline Cellulose. ACS Applied Materials & Interfaces, 2013, 5, 8796-8804.	4.0	302
42	Fabrication and Characterization of Nanotemplated Carbon Monolithic Material. ACS Applied Materials & Interfaces, 2013, 5, 8572-8580.	4.0	10
43	Fabrication of Bonded Monolithic Porous Layer Open Tubular (monoPLOT) Columns in Wide Bore Capillary by Laminar Flow Thermal Initiation. Chromatographia, 2013, 76, 581-589.	0.7	16
44	Laser Processing of Quartz for Microfluidic Device Fabrication. Advanced Materials Research, 2012, 445, 436-441.	0.3	4
45	High speed laser surface modification of Ti–6Al–4V. Surface and Coatings Technology, 2012, 206, 3223-3229.	2.2	74
46	Versatile Capillary Column Temperature Control Using a Thermoelectric Array Based Platform. Analytical Chemistry, 2011, 83, 4307-4313.	3.2	25
47	Centrifugally-driven sample extraction, preconcentration and purification in microfluidic compact discs. TrAC - Trends in Analytical Chemistry, 2011, 30, 1575-1586.	5.8	24
48	Review on recent and advanced applications of monoliths and related porous polymer gels in micro-fluidic devices. Analytica Chimica Acta, 2010, 668, 100-113.	2.6	83
49	Selective laser sintering of hydroxyapatite/poly-ε-caprolactone scaffolds. Acta Biomaterialia, 2010, 6, 2511-2517.	4.1	164
50	The use of scanning contactless conductivity detection for the characterisation of stationary phases in micro-fluidic chips. Lab on A Chip, 2010, 10, 1777.	3.1	12
51	Dual contactless conductivity and amperometric detection on hybrid PDMS/glass electrophoresis microchips. Analyst, The, 2010, 135, 96-103.	1.7	63
52	Effect of Saturation and Post Processing on 3D Printed Calcium Phosphate Scaffolds. Key Engineering Materials, 2008, 396-398, 663-666.	0.4	8
53	Effect of Hydroxyapatite on Biodegradable Scaffolds Fabricated by SLS. Key Engineering Materials, 2008, 396-398, 659-662.	0.4	14
54	Procedure 4 Determination of Ca(II) in wood pulp using a calcium-selective electrode with poly(3,4-ethylenedioxythiophene) as ion-to-electron transducer. Comprehensive Analytical Chemistry, 2007. 49. e25-e28.	0.7	2

Mercedes VÃizquez

#	Article	IF	CITATIONS
55	Potentiometric sensors based on poly(3,4-ethylenedioxythiophene) (PEDOT) doped with sulfonated calix[4]arene and calix[4]resorcarenes. Journal of Solid State Electrochemistry, 2005, 9, 312-319.	1.2	49
56	Potentiometric sensors for Ag+ based on poly(3-octylthiophene) (POT). Journal of Solid State Electrochemistry, 2005, 9, 865-873.	1.2	36
57	Solution-cast films of poly(3,4-ethylenedioxythiophene) as ion-to-electron transducers in all-solid-state ion-selective electrodes. Sensors and Actuators B: Chemical, 2004, 97, 182-189.	4.0	116
58	Small-volume radial flow cell for all-solid-state ion-selective electrodes. Talanta, 2004, 62, 57-63.	2.9	34
59	Influence of oxygen and carbon dioxide on the electrochemical stability of poly(3,4-ethylenedioxythiophene) used as ion-to-electron transducer in all-solid-state ion-selective electrodes. Sensors and Actuators B: Chemical, 2002, 82, 7-13.	4.0	138
60	Determination of Na+, K+, Ca2+, and Clâ^ Ions in Wood Pulp Suspension Using Ion-Selective Electrodes. Electroanalysis, 2001, 13, 1119-1124.	1.5	18
61	Design of Bone Scaffolds Structures for Rapid Prototyping with Increased Strength and Osteoconductivity. Advanced Materials Research, 0, 83-86, 914-922.	0.3	12
62	Fabrication of microstructured planar chromatography platforms via laser ablation. Journal of Liquid Chromatography and Related Technologies, 0, , 1-6.	0.5	1