
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7070900/publications.pdf Version: 2024-02-01

SHIFFNC DAL

#	Article	IF	CITATIONS
1	Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. International Journal of Coal Geology, 2012, 94, 3-21.	5.0	863
2	Coal deposits as potential alternative sources for lanthanides and yttrium. International Journal of Coal Geology, 2012, 94, 67-93.	5.0	639
3	Coal as a promising source of critical elements: Progress and future prospects. International Journal of Coal Geology, 2018, 186, 155-164.	5.0	396
4	Mineralogy and geochemistry of boehmite-rich coals: New insights from the Haerwusu Surface Mine, Jungar Coalfield, Inner Mongolia, China. International Journal of Coal Geology, 2008, 74, 185-202.	5.0	362
5	A review of anomalous rare earth elements and yttrium in coal. International Journal of Coal Geology, 2016, 159, 82-95.	5.0	356
6	Mineralogy and geochemistry of the No. 6 Coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China. International Journal of Coal Geology, 2006, 66, 253-270.	5.0	322
7	Abundances and distribution of minerals and elements in high-alumina coal fly ash from the Jungar Power Plant, Inner Mongolia, China. International Journal of Coal Geology, 2010, 81, 320-332.	5.0	292
8	Enrichment of U–Se–Mo–Re–V in coals preserved within marine carbonate successions: geochemical and mineralogical data from the Late Permian Guiding Coalfield, Guizhou, China. Mineralium Deposita, 2015, 50, 159-186.	4.1	287
9	Concentration and distribution of elements in Late Permian coals from western Guizhou Province, China. International Journal of Coal Geology, 2005, 61, 119-137.	5.0	264
10	Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies. Applied Geochemistry, 2013, 31, 1-11.	3.0	261
11	Chemical and mineralogical compositions of silicic, mafic, and alkali tonsteins in the late Permian coals from the Songzao Coalfield, Chongqing, Southwest China. Chemical Geology, 2011, 282, 29-44.	3.3	258
12	On the fundamental difference between coal rank and coal type. International Journal of Coal Geology, 2013, 118, 58-87.	5.0	258
13	Mineralogical and geochemical compositions of the coal in the Guanbanwusu Mine, Inner Mongolia, China: Further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar Coalfield. International Journal of Coal Geology, 2012, 98, 10-40.	5.0	252
14	Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit, Inner Mongolia, China: New data and genetic implications. International Journal of Coal Geology, 2012, 90-91, 72-99.	5.0	238
15	Recognition of peat depositional environments in coal: A review. International Journal of Coal Geology, 2020, 219, 103383.	5.0	237
16	The importance of minerals in coal as the hosts of chemical elements: A review. International Journal of Coal Geology, 2019, 212, 103251.	5.0	232
17	Mineralogical and geochemical compositions of the Pennsylvanian coal in the Adaohai Mine, Daqingshan Coalfield, Inner Mongolia, China: Modes of occurrence and origin of diaspore, gorceixite, and ammonian illite. International Journal of Coal Geology, 2012, 94, 250-270.	5.0	221
18	Mineralogy and geochemistry of a superhigh-organic-sulfur coal, Yanshan Coalfield, Yunnan, China: Evidence for a volcanic ash component and influence by submarine exhalation. Chemical Geology, 2008, 255, 182-194.	3.3	215

#	Article	IF	CITATIONS
19	Origin of minerals and elements in the Late Permian coals, tonsteins, and host rocks of the Xinde Mine, Xuanwei, eastern Yunnan, China. International Journal of Coal Geology, 2014, 121, 53-78.	5.0	203
20	Mineralogical and geochemical anomalies of late Permian coals from the Fusui Coalfield, Guangxi Province, southern China: Influences of terrigenous materials and hydrothermal fluids. International Journal of Coal Geology, 2013, 105, 60-84.	5.0	200
21	Geochemical and mineralogical evidence for a coal-hosted uranium deposit in the Yili Basin, Xinjiang, northwestern China. Ore Geology Reviews, 2015, 70, 1-30.	2.7	189
22	Enrichment of U-Re-V-Cr-Se and rare earth elements in the Late Permian coals of the Moxinpo Coalfield, Chongqing, China: Genetic implications from geochemical and mineralogical data. Ore Geology Reviews, 2017, 80, 1-17.	2.7	188
23	Distribution, isotopic variation and origin of sulfur in coals in the Wuda coalfield, Inner Mongolia, China. International Journal of Coal Geology, 2002, 51, 237-250.	5.0	186
24	Distribution of rare earth elements in coal combustion fly ash, determined by SHRIMP-RG ion microprobe. International Journal of Coal Geology, 2017, 184, 1-10.	5.0	179
25	Enrichment of arsenic, antimony, mercury, and thallium in a Late Permian anthracite from Xingren, Guizhou, Southwest China. International Journal of Coal Geology, 2006, 66, 217-226.	5.0	172
26	Composition and modes of occurrence of minerals and elements in coal combustion products derived from high-Ge coals. International Journal of Coal Geology, 2014, 121, 79-97.	5.0	172
27	Valuable elements in Chinese coals: a review. International Geology Review, 2018, 60, 590-620.	2.1	170
28	Revisiting the late Permian coal from the Huayingshan, Sichuan, southwestern China: Enrichment and occurrence modes of minerals and trace elements. International Journal of Coal Geology, 2014, 122, 110-128.	5.0	160
29	Coal-derived unburned carbons in fly ash: A review. International Journal of Coal Geology, 2017, 179, 11-27.	5.0	158
30	Rare earth elements and yttrium in coal ash from the Luzhou power plant in Sichuan, Southwest China: Concentration, characterization and optimized extraction. International Journal of Coal Geology, 2019, 203, 1-14.	5.0	151
31	Distribution of rare earth elements in eastern Kentucky coals: Indicators of multiple modes of enrichment?. International Journal of Coal Geology, 2016, 160-161, 73-81.	5.0	149
32	Geochemistry of the late Permian No. 30 coal seam, Zhijin Coalfield of Southwest China: influence of a siliceous low-temperature hydrothermal fluid. Applied Geochemistry, 2004, 19, 1315-1330.	3.0	146
33	Mineralogical and compositional characteristics of Late Permian coals from an area of high lung cancer rate in Xuan Wei, Yunnan, China: Occurrence and origin of quartz and chamosite. International Journal of Coal Geology, 2008, 76, 318-327.	5.0	146
34	Altered volcanic ashes in coal and coal-bearing sequences: A review of their nature and significance. Earth-Science Reviews, 2017, 175, 44-74.	9.1	145
35	Metalliferous coal deposits in East Asia (Primorye of Russia and South China): A review of geodynamic controls and styles of mineralization. Gondwana Research, 2016, 29, 60-82.	6.0	144
36	Factors controlling geochemical and mineralogical compositions of coals preserved within marine carbonate successions: A case study from the Heshan Coalfield, southern China. International Journal of Coal Geology, 2013, 109-110, 77-100.	5.0	143

#	Article	IF	CITATIONS
37	Mineralogical and geochemical compositions of Late Permian coals and host rocks from the Guxu Coalfield, Sichuan Province, China, with emphasis on enrichment of rare metals. International Journal of Coal Geology, 2016, 166, 71-95.	5.0	143
38	Elemental and mineralogical anomalies in the coal-hosted Ge ore deposit of Lincang, Yunnan, southwestern China: Key role of N2–CO2-mixed hydrothermal solutions. International Journal of Coal Geology, 2015, 152, 19-46.	5.0	142
39	Mineralogical and geochemical compositions of the Pennsylvanian coal in the Hailiushu Mine, Daqingshan Coalfield, Inner Mongolia, China: Implications of sediment-source region and acid hydrothermal solutions. International Journal of Coal Geology, 2015, 137, 92-110.	5.0	137
40	Determination of As and Se in coal and coal combustion products using closed vessel microwave digestion and collision/reaction cell technology (CCT) of inductively coupled plasma mass spectrometry (ICP-MS). International Journal of Coal Geology, 2014, 124, 1-4.	5.0	132
41	Petrology and geochemistry of the high-sulphur coals from the Upper Permian carbonate coal measures in the Heshan Coalfield, southern China. International Journal of Coal Geology, 2003, 55, 1-26.	5.0	130
42	Organic associations of non-mineral elements in coal: A review. International Journal of Coal Geology, 2020, 218, 103347.	5.0	128
43	Enrichment of critical elements (Nb-Ta-Zr-Hf-REE) within coal and host rocks from the Datanhao mine, Daqingshan Coalfield, northern China. Ore Geology Reviews, 2019, 111, 102951.	2.7	126
44	Mineralogy and geochemistry of a Late Permian coal in the Dafang Coalfield, Guizhou, China: influence from siliceous and iron-rich calcic hydrothermal fluids. International Journal of Coal Geology, 2005, 61, 241-258.	5.0	125
45	Petrological, geochemical, and mineralogical compositions of the low-Ge coals from the Shengli Coalfield, China: A comparative study with Ge-rich coals and a formation model for coal-hosted Ge ore deposit. Ore Geology Reviews, 2015, 71, 318-349.	2.7	121
46	Geochemical and mineralogical anomalies of the late Permian coal in the Zhijin coalfield of southwest China and their volcanic origin. International Journal of Coal Geology, 2003, 55, 117-138.	5.0	119
47	Geochemistry and mineralogy of the Late Permian coals from the Songzo Coalfield, Chongqing, southwestern China. Science in China Series D: Earth Sciences, 2007, 50, 678-688.	0.9	119
48	Petrology, Mineralogy, and Chemistry of Size-Fractioned Fly Ash from the Jungar Power Plant, Inner Mongolia, China, with Emphasis on the Distribution of Rare Earth Elements. Energy & Fuels, 2014, 28, 1502-1514.	5.1	119
49	A new type of Nb (Ta)–Zr(Hf)–REE–Ga polymetallic deposit in the late Permian coal-bearing strata, eastern Yunnan, southwestern China: Possible economic significance and genetic implications. International Journal of Coal Geology, 2010, 83, 55-63.	5.0	118
50	The cause of endemic fluorosis in western Guizhou Province, Southwest China. Fuel, 2004, 83, 2095-2098.	6.4	117
51	Effects of Magmatic Intrusion on Mineralogy and Geochemistry of Coals from the Fengfengâ^'Handan Coalfield, Hebei, China. Energy & Fuels, 2007, 21, 1663-1673.	5.1	117
52	Modes of occurrence of elements in coal: A critical evaluation. Earth-Science Reviews, 2021, 222, 103815.	9.1	115
53	Occurrence and origin of minerals in a chamosite-bearing coal of Late Permian age, Zhaotong, Yunnan, China. American Mineralogist, 2007, 92, 1253-1261.	1.9	107
54	Elements and phosphorus minerals in the middle Jurassic inertinite-rich coals of the Muli Coalfield on the Tibetan Plateau. International Journal of Coal Geology, 2015, 144-145, 23-47.	5.0	105

#	Article	IF	CITATIONS
55	Anomalies of rare metals in Lopingian super-high-organic-sulfur coals from the Yishan Coalfield, Guangxi, China. Ore Geology Reviews, 2017, 88, 235-250.	2.7	104
56	Geochemistry of ultra-fine and nano-compounds in coal gasification ashes: A synoptic view. Science of the Total Environment, 2013, 456-457, 95-103.	8.0	88
57	A high-pyrite semianthracite of Late Permian age in the Songzao Coalfield, southwestern China: Mineralogical and geochemical relations with underlying mafic tuffs. International Journal of Coal Geology, 2010, 83, 430-445.	5.0	87
58	Surface analysis of pyrite in the No. 9 coal seam, Wuda Coalfield, Inner Mongolia, China, using high-resolution time-of-flight secondary ion mass-spectrometry. International Journal of Coal Geology, 2003, 55, 139-150.	5.0	80
59	Cryptic sediment-hosted critical element mineralization from eastern Yunnan Province, southwestern China: Mineralogy, geochemistry, relationship to Emeishan alkaline magmatism and possible origin. Ore Geology Reviews, 2017, 80, 116-140.	2.7	80
60	Determination of Eu concentrations in coal, fly ash and sedimentary rocks using a cation exchange resin and inductively coupled plasma mass spectrometry (ICP-MS). International Journal of Coal Geology, 2018, 191, 152-156.	5.0	80
61	Stone coal in China: a review. International Geology Review, 2018, 60, 736-753.	2.1	77
62	The sources, pathway, and preventive measures for fluorosis in Zhijin County, Guizhou, China. Applied Geochemistry, 2007, 22, 1017-1024.	3.0	74
63	Enrichment of germanium and associated arsenic and tungsten in coal and roll-front uranium deposits. Chemical Geology, 2017, 463, 29-49.	3.3	70
64	Origin of a kaolinite-NH 4 -illite-pyrophyllite-chlorite assemblage in a marine-influenced anthracite and associated strata from the Jincheng Coalfield, Qinshui Basin, Northern China. International Journal of Coal Geology, 2018, 185, 61-78.	5.0	70
65	Fluorine content and distribution pattern in Chinese coals. International Journal of Coal Geology, 2004, 57, 143-149.	5.0	67
66	Discovery of the superlarge gallium ore deposit in Jungar, Inner Mongolia, North China. Science Bulletin, 2006, 51, 2243-2252.	1.7	66
67	Nanoquartz in Late Permian C1 coal and the high incidence of female lung cancer in the Pearl River Origin area: a retrospective cohort study. BMC Public Health, 2008, 8, 398.	2.9	66
68	Petrology, Palynology, and Geochemistry of Gray Hawk Coal (Early Pennsylvanian, Langsettian) in Eastern Kentucky, USA. Minerals (Basel, Switzerland), 2015, 5, 592-622.	2.0	66
69	Petrography and geochemistry of the Middle Devonian coal from Luquan, Yunnan Province, China. Fuel, 2006, 85, 456-464.	6.4	65
70	Applied investigation on the interaction of hazardous elements binding on ultrafine and nanoparticles in Chinese anthracite-derived fly ash. Science of the Total Environment, 2012, 419, 250-264.	8.0	62
71	A model for Nb–Zr–REE–Ga enrichment in Lopingian altered alkaline volcanic ashes: Key evidence of H-O isotopes. Lithos, 2018, 302-303, 359-369.	1.4	61
72	Marine derived 87Sr/86Sr in coal, a new key to geochronology and palaeoenvironment: Elucidation of the India-Eurasia and China-Indochina collisions in Yunnan, China. International Journal of Coal Geology, 2019, 215, 103304.	5.0	60

#	Article	IF	CITATIONS
73	Geochemistry of carbon nanotube assemblages in coal fire soot, Ruth Mullins fire, Perry County, Kentucky. International Journal of Coal Geology, 2012, 94, 206-213.	5.0	59
74	An investigation of Wulantuga coal (Cretaceous, Inner Mongolia) macerals: Paleopathology of faunal and fungal invasions into wood and the recognizable clues for their activity. International Journal of Coal Geology, 2013, 114, 44-53.	5.0	57
75	Modes of occurrence and origin of mineral matter in the Palaeogene coal (No. 19-2) from the Hunchun Coalfield, Jilin Province, China. International Journal of Coal Geology, 2018, 189, 94-110.	5.0	57
76	Fluorine concentration of coals in China—An estimation considering coal reserves. Fuel, 2006, 85, 929-935.	6.4	56
77	Mineralogy and geochemistry of Late Permian coals from the Taoshuping Mine, Yunnan Province, China: Evidences for the sources of minerals. International Journal of Coal Geology, 2012, 96-97, 49-59.	5.0	56
78	New insights into the lowest Xuanwei Formation in eastern Yunnan Province, SW China: Implications for Emeishan large igneous province felsic tuff deposition and the cause of the end-Guadalupian mass extinction. Lithos, 2016, 264, 375-391.	1.4	56
79	Determination of Chemical Speciation of Arsenic and Selenium in High-As Coal Combustion Ash by X-ray Photoelectron Spectroscopy: Examples from a Kentucky Stoker Ash. ACS Omega, 2018, 3, 17637-17645.	3.5	53
80	Mississippian anthracites in Guangxi Province, southern China: Petrological, mineralogical, and rare earth element evidence for high-temperature solutions. International Journal of Coal Geology, 2018, 197, 84-114.	5.0	53
81	Enrichment origin of critical elements (Li and rare earth elements) and a Mo-U-Se-Re assemblage in Pennsylvanian anthracite from the Jincheng Coalfield, southeastern Qinshui Basin, northern China. Ore Geology Reviews, 2019, 115, 103184.	2.7	52
82	Concentrations and origins of platinum group elements in Late Paleozoic coals of China. International Journal of Coal Geology, 2003, 55, 59-70.	5.0	51
83	Modes of occurrence of fluorine in the Late Paleozoic No. 6 coal from the Haerwusu Surface Mine, Inner Mongolia, China. Fuel, 2011, 90, 248-254.	6.4	50
84	Mineralization of REE-Y-Nb-Ta-Zr-Hf in Wuchiapingian coals from the Liupanshui Coalfield, Guizhou, southwestern China: Geochemical evidence for terrigenous input. Ore Geology Reviews, 2019, 115, 103190.	2.7	49
85	Leaching behavior of trace elements from fly ashes of five Chinese coal power plants. International Journal of Coal Geology, 2020, 219, 103381.	5.0	46
86	Evidence for multiple sources for inorganic components in the Tucheng coal deposit, western Guizhou, China and the lack of critical-elements. International Journal of Coal Geology, 2020, 223, 103468.	5.0	46
87	Location of Cerium in Coal-Combustion Fly Ashes: Implications for Recovery of Lanthanides. Coal Combustion and Gasification Products, 2003, 5, 73-78.	1.0	45
88	Mineralogy and geochemistry of Al-hydroxide/oxyhydroxide mineral-bearing coals of Late Paleozoic age from the Weibei coalfield, southeastern Ordos Basin, North China. Applied Geochemistry, 2011, 26, 1086-1096.	3.0	43
89	Determination of Boron in Coal Using Closed-Vessel Microwave Digestion and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Energy & Fuels, 2014, 28, 4517-4522.	5.1	43
90	Naturally Occurring Radioactive Materials in Uranium-Rich Coals and Associated Coal Combustion Residues from China. Environmental Science & amp; Technology, 2017, 51, 13487-13493.	10.0	41

#	Article	IF	CITATIONS
91	Environmental perturbations during the latest Permian: Evidence from organic carbon and mercury isotopes of a coal-bearing section in Yunnan Province, southwestern China. Chemical Geology, 2020, 549, 119680.	3.3	40
92	Mineralogical and geochemical characteristics of altered volcanic ashes (tonsteins and K-bentonites) from the latest Permian coal-bearing strata of western Guizhou Province, southwestern China. International Journal of Coal Geology, 2021, 237, 103707.	5.0	40
93	Coal in a carbonate sequence stratigraphic framework: the Upper Permian Heshan Formation in central Guangxi, southern China. Journal of the Geological Society, 2003, 160, 285-298.	2.1	39
94	Mineralogy and geochemistry of ash and slag from coal gasification in China: a review. International Geology Review, 2018, 60, 717-735.	2.1	39
95	Coal geology in China: an overview. International Geology Review, 2018, 60, 531-534.	2.1	39
96	Modes of occurrence of non-mineral inorganic elements in lignites from the Mile Basin, Yunnan Province, China. Fuel, 2018, 222, 146-155.	6.4	39
97	Influence of surface area properties on mercury capture behaviour of coal fly ashes from some Bulgarian power plants. International Journal of Coal Geology, 2013, 116-117, 227-235.	5.0	38
98	Geochemical partitioning from pulverized coal to fly ash and bottom ash. Fuel, 2020, 279, 118542.	6.4	37
99	Size-Dependent Variations in Fly Ash Trace Element Chemistry: Examples from a Kentucky Power Plant and with Emphasis on Rare Earth Elements. Energy & Fuels, 2017, 31, 438-447.	5.1	35
100	The occurrence of gold in fly ash derived from high-Ge coal. Mineralium Deposita, 2014, 49, 1-6.	4.1	34
101	Clay Mineralogy of Coal-Hosted Nb-Zr-REE-Ga Mineralized Beds from Late Permian Strata, Eastern Yunnan, SW China: Implications for Paleotemperature and Origin of the Micro-Quartz. Minerals (Basel, Switzerland), 2016, 6, 45.	2.0	34
102	Petrology and chemistry of sized Pennsylvania anthracite, with emphasis on the distribution of rare earth elements. Fuel, 2016, 185, 305-315.	6.4	34
103	Leaching characteristics of alkaline coal combustion by-products: A case study from a coal-fired power plant, Hebei Province, China. Fuel, 2019, 255, 115710.	6.4	34
104	Fluorine in Bulgarian coals. International Journal of Coal Geology, 2013, 105, 16-23.	5.0	32
105	Geological factors controlling variations in the mineralogical and elemental compositions of Late Permian coals from the Zhijin-Nayong Coalfield, western Guizhou, China. International Journal of Coal Geology, 2021, 247, 103855.	5.0	29
106	Mineralogy and geochemistry of the Late Triassic coal from the Caotang mine, northeastern Sichuan Basin, China, with emphasis on the enrichment of the critical element lithium. Ore Geology Reviews, 2021, 139, 104582.	2.7	29
107	Electron probe microanalysis of major and trace elements in coals and their low-temperature ashes from the Wulantuga and Lincang Ge ore deposits, China. Fuel, 2018, 215, 1-12.	6.4	28
108	Occurrence of carbon nanotubes and implication for the siting of elements in selected anthracites. Fuel, 2020, 263, 116740.	6.4	28

#	Article	IF	CITATIONS
109	Coal facies evolution of the main minable coal-bed in the Heidaigou Mine, Jungar Coalfield, Inner Mongolia, northern China. Science in China Series D: Earth Sciences, 2007, 50, 144-152.	0.9	27
110	Origin of Minerals and Critical Metals in an Argillized Tuff from the Huayingshan Coalfield, Southwestern China. Minerals (Basel, Switzerland), 2017, 7, 92.	2.0	27
111	The occurrence of buddingtonite in super-high-organic-sulphur coals from the Yishan Coalfield, Guangxi, southern China. International Journal of Coal Geology, 2018, 195, 347-361.	5.0	26
112	Characterization of superhigh-organic-sulfur Raša coal, Istria, Croatia, and its environmental implication. International Journal of Coal Geology, 2020, 217, 103344.	5.0	26
113	Petrology and Geochemistry of the Harlan, Kellioka, and Darby Coals from the Louellen 7.5-Minute Quadrangle, Harlan County, Kentucky. Minerals (Basel, Switzerland), 2015, 5, 894-918.	2.0	26
114	Stratigraphic thermohistory and its implications for regional geoevolution in the Tarim Basin, NW China. Science China Earth Sciences, 2010, 53, 1495-1505.	5.2	24
115	Strontium isotopes in high- and low-Ge coals from the Shengli Coalfield, Inner Mongolia, northern China: New indicators for Ge source. International Journal of Coal Geology, 2021, 233, 103642.	5.0	24
116	Bio-geochemical evolution and critical element mineralization in the Cretaceous-Cenozoic coals from the southern Far East Russia and northeastern China. Applied Geochemistry, 2020, 117, 104602.	3.0	23
117	Distribution of Trace Elements in Fractions after Micronization and Density-Gradient Centrifugation of High-Ge Coals from the Wulantuga and Lincang Ge Ore Deposits in China. Energy & Fuels, 2017, 31, 11818-11837.	5.1	21
118	Nitrogen isotopic compositions in NH4+-mineral-bearing coal: Origin and isotope fractionation. Chemical Geology, 2021, 559, 119946.	3.3	21
119	Geochemistry of Palaeogene coals from the Fuqiang Mine, Hunchun Coalfield, northeastern China: Composition, provenance, and relation to the adjacent polymetallic deposits. Journal of Geochemical Exploration, 2019, 196, 192-207.	3.2	20
120	Stable isotopes of organic carbon, palynology, and petrography of a thick low-rank Miocene coal within the Mile Basin, Yunnan Province, China: implications for palaeoclimate and sedimentary conditions. Organic Geochemistry, 2020, 149, 104103.	1.8	20
121	What do coal geochemistry statistics really mean?. Fuel, 2020, 267, 117084.	6.4	20
122	Average Linkage Hierarchical Clustering Algorithm for Determining the Relationships between Elements in Coal. ACS Omega, 2021, 6, 6206-6217.	3.5	19
123	Resources of critical metals in coal-bearing sequences in China: Enrichment types and distribution. Chinese Science Bulletin, 2020, 65, 3715-3729.	0.7	19
124	Mineralogy, geochemistry and mercury content characterization of fly ashes from the Maritza 3 and Varna thermoelectric power plants, Bulgaria. Fuel, 2016, 186, 674-684.	6.4	17
125	Mineralogy and geochemistry of the Palaeogene low-rank coal from the Baise Coalfield, Guangxi Province, China. International Journal of Coal Geology, 2019, 214, 103282.	5.0	17
126	Influences of Low-Temperature Hydrothermal Fluids on the Re-distributions and Occurrences of Associated Elements in Coal - A Case Study from the Late Permian Coals in the Zhijin Coalfield, Guizhou Province, Southern China. Acta Geologica Sinica, 2002, 76, 437-445.	1.4	16

SHIFENG DAI

#	Article	IF	CITATIONS
127	Distribution of rare earth elements and other critical elements in beneficiated Pennsylvania anthracites. Fuel, 2021, 304, 121400.	6.4	16
128	Mineral Matter in the Late Permian C1 Coal from Yunnan Province, China, with Emphasis on Its Origins and Modes of Occurrence. Minerals (Basel, Switzerland), 2021, 11, 19.	2.0	16
129	Origin of the tuff parting and associated enrichments of Zr, REY, redox-sensitive and other elements in the Early Miocene coal of the Siniy Utyes Basin, southwestern Primorye, Russia. International Journal of Coal Geology, 2022, 250, 103913.	5.0	16
130	Granite-bauxite provenance of abnormally enriched boehmite and critical elements (Nb, Ta, Zr, Hf and) Tj ETQq0 (Geochemical Exploration, 2022, 239, 107016.	0 rgBT /0 3.2	Overlock 10 ⁻ 15
131	Petrographic and geochemical characteristics of selected coal seams from the Late Cretaceous-Paleocene Guaduas Formation, Eastern Cordillera Basin, Colombia. International Journal of Coal Geology, 2022, 259, 104042.	5.0	15
132	Carbon dioxide storage options for the COACH project in the Bohai Basin, China. Energy Procedia, 2009, 1, 2785-2792.	1.8	14
133	Organic-association of Ge in the coal-hosted ore deposits: An experimental and theoretical approach. Ore Geology Reviews, 2020, 117, 103291.	2.7	12
134	The Tarim Basin, China, a prospect for plume-related Zr(Hf)-Nb(Ta)-REY-Ga-U mineralization. Ore Geology Reviews, 2021, 133, 104081.	2.7	12
135	Composition of lipids from coal deposits of the Far East: Relations to vegetation and climate change during the Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 538, 109479.	2.3	11
136	Isotopes of carbon and oxygen of siderite and their genetic indications for the Late Permian critical-metal tuffaceous deposits (Nb-Zr-REY-Ga) from Yunnan, southwestern China. Chemical Geology, 2022, 592, 120727.	3.3	11
137	New insights into the origin of Middle to Late Permian volcaniclastics (Nb-Zr-REY-Ga-rich horizons) from eastern Yunnan, SW China. Lithos, 2022, 420-421, 106702.	1.4	10
138	Structure change of 430 stainless steel in the heating process. International Journal of Minerals, Metallurgy, and Materials, 2008, 15, 34-37.	0.2	9
139	Composition and mode of occurrence of minerals in Late Permian coals from Zhenxiong County, northeastern Yunnan, China. International Journal of Coal Science and Technology, 2014, 1, 13-22.	6.0	9
140	A novel method to estimate mineral compositions of mudrocks: A case study for the Canadian unconventional petroleum systems. Marine and Petroleum Geology, 2016, 73, 322-332.	3.3	9
141	The Cretaceous Turn of Geological Evolution: Key Evidence from East Asia. Acta Geologica Sinica, 2018, 92, 1991-2003.	1.4	8
142	Geochemistry, petrology, and palynology of the Princess No. 3 coal, Greenup County, Kentucky. International Journal of Coal Science and Technology, 2020, 7, 633-651.	6.0	7
143	Commercially available ammonium salt-catalyzed efficient dehydration of fructose to 5-hydroxymethylfurfural in ionic liquid. Inorganica Chimica Acta, 2015, 428, 32-36.	2.4	6
144	Organic geochemistry of funginite (Miocene, Eel River, Mendocino County, California, USA) and macrinite (Cretaceous, Inner Mongolia, China). International Journal of Coal Geology, 2017, 179, 60-71.	5.0	6

#	Article	IF	CITATIONS
145	Enrichment of Bi-Be-Mo-Cd-Pb-Nb-Ga, REEs and Y in the Permian coals of the Huainan Coalfield, Anhui, China: Discussion. Ore Geology Reviews, 2018, 102, 937-939.	2.7	6
146	Comments on Geochemical Characteristics of Rare-Metal, Rare-Scattered, and Rare-Earth Elements and Minerals in the Late Permian Coals from the Moxinpo Mine, Chongqing, China. Energy & Fuels, 2018, 32, 8891-8894.	5.1	6
147	Fast Screening of Coal Fly Ash with Potential for Rare Earth Element Recovery by Electron Paramagnetic Resonance Spectroscopy. Environmental Science & Technology, 2021, 55, 16716-16722.	10.0	6
148	Arsenic emission of high-arsenic coal combustion from southwestern Guizhou, China. Diqiu Huaxue, 2006, 25, 49-50.	0.5	5
149	Geological assessment for CO2 storage in the Bahaiwan Basin, East China. Energy Procedia, 2011, 4, 5990-5998.	1.8	5
150	The Sr isotope signature of Wuchiapingian semi-anthracites from Chongqing, southwestern China: Indication for hydrothermal effects. Gondwana Research, 2022, 103, 522-541.	6.0	4
151	Geochemical characteristics of Dongsheng sandstone-type uranium deposit, Ordos Basin. Diqiu Huaxue, 2007, 26, 235-243.	0.5	3
152	Toward the Threshold of Radiation Hazards of U in Chinese Coal through the CART Algorithm. Environmental Science & Technology, 2022, 56, 1864-1874.	10.0	3
153	A geological storage option for CO2 in the Bohaiwan Basin, East China?. Energy Procedia, 2011, 4, 4641-4647.	1.8	2
154	Soils and spoils: mineralogy and geochemistry of mining and processing wastes from lead and zinc mining at the Gratz Mine, Owen County, Kentucky. Journal of Soils and Sediments, 0, , 1.	3.0	2
155	Geochemistry of the late Permian No. 30 coal seam, Zhijin Coalfield of Southwest China: influence of a siliceous low-temperature hydrothermal fluid. Applied Geochemistry, 2004, 19, 1315-1330.	3.0	1
156	Geological characteristics in buried coalfields synthetically using remote sensing and non-remote sensing information. , 1998, 3504, 357.		0
157	Professor Aiyun Zhang 1934–2006. International Journal of Coal Geology, 2006, 67, 213.	5.0	0
158	Fluoride exposure in the endemic fluorosis area of Guizhou, China. Diqiu Huaxue, 2006, 25, 70-70.	0.5	0
159	Core characteristics and corresponding measurement methods for manufactured nanoscale CaCO ₃ and manufactured nanoscale TiO ₂ . Journal of Experimental Nanoscience, 2013, 8, 121-129.	2.4	0
160	Obituary for Dr. Vladimir V. Seredin (1950–2014). International Journal of Coal Geology, 2014, 128-129, 162-164.	5.0	0
161	Obituary for Dr. Chen-Lin Chou (1943–2019). International Journal of Coal Geology, 2019, 211, 103230.	5.0	0