Fernanda Ledda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7070689/publications.pdf Version: 2024-02-01

FEDNANDA LEDDA

#	Article	IF	CITATIONS
1	Leucineâ€rich repeats and immunoglobulinâ€like domains 1 deficiency affects hippocampal dendrite complexity and impairs cognitive function. Developmental Neurobiology, 2021, 81, 774-785.	3.0	0
2	Lrig1 and Lrig3 cooperate to control Ret receptor signaling, sensory axonal growth and epidermal innervation. Development (Cambridge), 2021, 148, .	2.5	2
3	Tetraspanin1 promotes NGF signaling by controlling TrkA receptor proteostasis. Cellular and Molecular Life Sciences, 2020, 77, 2217-2233.	5.4	2
4	RET-independent signaling by GDNF ligands and GFRα receptors. Cell and Tissue Research, 2020, 382, 71-82.	2.9	23
5	GDNF and GFRα1 Are Required for Proper Integration of Adult-Born Hippocampal Neurons. Cell Reports, 2019, 29, 4308-4319.e4.	6.4	33
6	GDNF/GFRα1 Complex Abrogates Self-Renewing Activity of Cortical Neural Precursors Inducing Their Differentiation. Stem Cell Reports, 2018, 10, 1000-1015.	4.8	11
7	Pea3 Transcription Factors, Etv4 and Etv5, Are Required for Proper Hippocampal Dendrite Development and Plasticity. Cerebral Cortex, 2018, 28, 236-249.	2.9	31
8	High Plasticity of New Granule Cells in the Aging Hippocampus. Cell Reports, 2017, 21, 1129-1139.	6.4	71
9	Mechanisms regulating dendritic arbor patterning. Cellular and Molecular Life Sciences, 2017, 74, 4511-4537.	5.4	37
10	Assembly of Neuronal Connectivity by Neurotrophic Factors and Leucine-Rich Repeat Proteins. Frontiers in Cellular Neuroscience, 2016, 10, 199.	3.7	13
11	GDNF/GFRα1 complex promotes development of hippocampal dendritic arbors and spines via NCAM. Development (Cambridge), 2016, 143, 4224-4235.	2.5	37
12	Lrig1 is a cellâ€intrinsic modulator of hippocampal dendrite complexity and <scp>BDNF</scp> signaling. EMBO Reports, 2016, 17, 601-616.	4.5	39
13	Pea3 Transcription Factor Family Members Etv4 and Etv5 Mediate Retrograde Signaling and Axonal Growth of DRG Sensory Neurons in Response to NGF. Journal of Neuroscience, 2013, 33, 15940-15951.	3.6	39
14	New insights into the control of neurotrophic growth factor receptor signaling: Implications for nervous system development and repair. Journal of Neurochemistry, 2012, 123, 652-661.	3.9	26
15	GDNF and GFRα: a versatile molecular complex for developing neurons. Trends in Neurosciences, 2008, 31, 384-391.	8.6	176
16	Lrig1 Is an Endogenous Inhibitor of Ret Receptor Tyrosine Kinase Activation, Downstream Signaling, and Biological Responses to GDNF. Journal of Neuroscience, 2008, 28, 39-49.	3.6	92
17	Ligand-Induced Cell Adhesion as a New Mechanism to Promote Synapse Formation. Cell Adhesion and Migration, 2007, 1, 137-139.	2.7	12
18	GDNF and GFRα1 promote formation of neuronal synapses by ligand-induced cell adhesion. Nature Neuroscience, 2007, 10, 293-300.	14.8	145

Fernanda Ledda

#	Article	IF	CITATIONS
19	Negative Regulation of Receptor Tyrosine Kinase (RTK) Signaling: A Developing Field. Biomarker Insights, 2007, 2, 45-58.	2.5	13
20	GDNF is a chemoattractant factor for neuronal precursor cells in the rostral migratory stream. Molecular and Cellular Neurosciences, 2006, 31, 505-514.	2.2	130
21	The Neural Cell Adhesion Molecule NCAM Is an Alternative Signaling Receptor for GDNF Family Ligands. Cell, 2003, 113, 867-879.	28.9	530
22	Target-Derived GFRα1 as an Attractive Guidance Signal for Developing Sensory and Sympathetic Axons via Activation of Cdk5. Neuron, 2002, 36, 387-401.	8.1	107
23	Released GFRα1 Potentiates Downstream Signaling, Neuronal Survival, and Differentiation via a Novel Mechanism of Recruitment of c-Ret to Lipid Rafts. Neuron, 2001, 29, 171-184.	8.1	248