Marian Gayle McCord

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7070675/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transparent and high barrier plasma functionalized acrylic coated cellulose triacetate films. Progress in Organic Coatings, 2021, 150, 105988.	1.9	1
2	Auxetic deformation of the weft-knitted Miura-ori fold. Textile Reseach Journal, 2020, 90, 617-630.	1.1	14
3	New Mosquitocide Derived From Volcanic Rock. Journal of Medical Entomology, 2020, 58, 458-464.	0.9	2
4	Sustainable atmospheric-pressure plasma treatment of cellulose triacetate (CTA) films for electronics. Journal of Applied Physics, 2020, 128, 075302.	1.1	3
5	Highly tunable bioadhesion and optics of 3D printable PNIPAm/cellulose nanofibrils hydrogels. Carbohydrate Polymers, 2020, 234, 115898.	5.1	45
6	Fabric infused with a botanical repellent for protection against mosquitoes. Journal of the Textile Institute, 2019, 110, 1468-1474.	1.0	4
7	Unique thermo-responsivity and tunable optical performance of poly(N-isopropylacrylamide)-cellulose nanocrystal hydrogel films. Carbohydrate Polymers, 2019, 208, 495-503.	5.1	49
8	Desizing of PVA sized pet/cotton fabrics with atmospheric pressure plasma. Cellulose, 2018, 25, 869-881.	2.4	16
9	Surface-Engineered Blood Adsorption Device for Hyperphosphatemia Treatment. ASAIO Journal, 2018, 64, 389-394.	0.9	Ο
10	Atmospheric Pressure Plasma Grafting of a Vinyl-Quaternary Compound to Nonwoven Polypropylene and Cotton. Journal of Engineered Fibers and Fabrics, 2018, 13, 155892501801300.	0.5	1
11	Study of poly(N-isopropylacrylamide) grafted cotton fabrics initiated by atmospheric pressure plasma. Applied Surface Science, 2018, 453, 182-191.	3.1	10
12	Desizing of starch sized cotton fabrics with atmospheric pressure plasma. Cellulose, 2017, 24, 5685-5695.	2.4	8
13	The effect of atmospheric pressure plasma on paper and pulps. BioResources, 2017, 12, 8199-8216.	0.5	2
14	Conformal Atomic Layer Deposition of Alumina on Millimeter Tall, Vertically-Aligned Carbon Nanotube Arrays. ACS Applied Materials & Interfaces, 2014, 6, 19135-19143.	4.0	32
15	Copper-Encapsulated Vertically Aligned Carbon Nanotube Arrays. ACS Applied Materials & Interfaces, 2013, 5, 10774-10781.	4.0	17
16	Novel atmospheric plasma enhanced chitosan nanofiber/gauze composite wound dressings. Journal of Applied Polymer Science, 2013, 129, 916-923.	1.3	33
17	Multifunctional and durable nanofiberâ€fabricâ€layered composite for protective application. Journal of Applied Polymer Science, 2013, 128, 1219-1226.	1.3	10
18	Atmospheric plasma application to improve adhesion of electrospun nanofibers onto protective fabric. Journal of Adhesion Science and Technology, 2013, 27, 924-938.	1.4	5

#	Article	IF	CITATIONS
19	Plasma-Electrospinning Hybrid Process and Plasma Pretreatment to Improve Adhesive Properties of Nanofibers on Fabric Surface. Plasma Chemistry and Plasma Processing, 2012, 32, 275-291.	1.1	17
20	Novel Atmospheric Plasma Enhanced Silk Fibroin Nanofiber/Gauze Composite Wound Dressings. Journal of Fiber Bioengineering and Informatics, 2012, 5, 227-242.	0.2	2
21	Multifunctional ZnO/Nylon 6 nanofiber mats by an electrospinning–electrospraying hybrid process for use in protective applications. Science and Technology of Advanced Materials, 2011, 12, 055004.	2.8	54
22	One-step synthesis of silver nanoparticle-filled nylon 6 nanofibers and their antibacterial properties. Journal of Materials Chemistry, 2011, 21, 10330.	6.7	123
23	Atmospheric plasma treatment of preâ€electrospinning polymer solution: A feasible method to improve electrospinnability. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 115-122.	2.4	33
24	A facile approach to fabricate porous nylon 6 nanofibers using silica nanotemplate. Journal of Applied Polymer Science, 2011, 120, 425-433.	1.3	20
25	Analysis of atmospheric pressure plasma parameters during treatment of polyethylene terephthalate films. Journal of Applied Polymer Science, 2011, 121, 1875-1884.	1.3	3
26	Durable antibacterial Ag/polyacrylonitrile (Ag/PAN) hybrid nanofibers prepared by atmospheric plasma treatment and electrospinning. European Polymer Journal, 2011, 47, 1402-1409.	2.6	139
27	Electrospun ultrathin nylon fibers for protective applications. Journal of Applied Polymer Science, 2010, 116, 2181-2187.	1.3	37
28	Grafting of poly(N-isopropylacrylamide) onto nylon and polystyrene surfaces by atmospheric plasma treatment followed with free radical graft copolymerization. Journal of Applied Polymer Science, 2007, 104, 3614-3621.	1.3	44
29	Functional finishing of nonwoven fabrics. I. Accessibility of surface modified PET spunbond by atmospheric pressure He/O2 plasma treatment. Journal of Applied Polymer Science, 2006, 100, 4306-4310.	1.3	19
30	Helium/oxygen atmospheric pressure plasma treatment on poly(ethylene terephthalate) and poly(trimethylene terephthalate) knitted fabrics: Comparison of low-stress mechanical/surface chemical properties. Fibers and Polymers, 2005, 6, 113-120.	1.1	17
31	Poly(vinyl alcohol) Desizing Mechanism via Atmospheric Pressure Plasma Exposure. Plasma Processes and Polymers, 2005, 2, 702-708.	1.6	41
32	Effects of Helium Atmospheric Pressure Plasma Treatment on Low-Stress Mechanical Properties of Polypropylene Nonwoven Fabrics. Textile Reseach Journal, 2005, 75, 771-778.	1.1	76
33	Surface Modification of Organic Polymer Films Treated in Atmospheric Plasmas. Journal of the Electrochemical Society, 2004, 151, C495.	1.3	39
34	Investigation into etching mechanism of polyethylene terephthalate (PET) films treated in helium and oxygenated-helium atmospheric plasmas. Journal of Applied Polymer Science, 2004, 94, 2383-2389.	1.3	57
35	The effect of etching on low-stress mechanical properties of polypropylene fabrics under helium/oxygen atmospheric pressure plasma. Fibers and Polymers, 2003, 4, 145-150.	1.1	16
36	Surface analysis of cotton fabrics fluorinated in radio-frequency plasma. Journal of Applied Polymer Science, 2003, 88, 2038-2047.	1.3	80

#	Article	IF	CITATIONS
37	Effects of atmospheric pressure helium/air plasma treatment on adhesion and mechanical properties of aramid fibers. Journal of Adhesion Science and Technology, 2003, 17, 847-860.	1.4	62
38	Effect of Atmospheric Plasma Treatment on Desizing of PVA on Cotton. Textile Reseach Journal, 2003, 73, 670-674.	1.1	105
39	The effect of atmospheric pressure helium plasma treatment on the surface and mechanical properties of ultrahigh-modulus polyethylene fibers. Journal of Adhesion Science and Technology, 2002, 16, 99-107.	1.4	70
40	Modifying Nylon and Polypropylene Fabrics with Atmospheric Pressure Plasmas. Textile Reseach Journal, 2002, 72, 491-498.	1.1	107
41	Atmospheric pressure helium + oxygen plasma treatment of ultrahigh modulus polyethylene fibers. Journal of Adhesion Science and Technology, 2002, 16, 449-457.	1.4	53
42	Estimation of the axial tensile modulus of a particle-reinforced composite fiber with variable radius. Composites Science and Technology, 2000, 60, 2731-2737.	3.8	10
43	An automated torsion balance for investigation of microstructure of single filaments. I. Polypropylene. Journal of Applied Polymer Science, 1996, 61, 293-306.	1.3	5