Marco A Fraga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7070275/publications.pdf

Version: 2024-02-01

64 2,509 28 49
papers citations h-index g-index

66 66 3109
all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Properties of Carbon-Supported Platinum Catalysts: Role of Carbon Surface Sites. Journal of Catalysis, 2002, 209, 355-364.	3.1	207
2	Role of dehydration catalyst acid properties on one-step DME synthesis over physical mixtures. Catalysis Today, 2005, 101, 39-44.	2.2	188
3	Obtaining CeO2–ZrO2 mixed oxides by coprecipitation: role of preparation conditions. Applied Catalysis B: Environmental, 2005, 58, 203-210.	10.8	169
4	Production of renewable hydrogen from aqueous-phase reforming of glycerol over Pt catalysts supported on different oxides. Renewable Energy, 2011, 36, 595-599.	4.3	119
5	Ozonation of model organic compounds catalysed by nanostructured cerium oxides. Applied Catalysis B: Environmental, 2011, 103, 190-199.	10.8	116
6	Hemicellulose-derived chemicals: one-step production of furfuryl alcohol from xylose. Green Chemistry, 2014, 16, 3942.	4.6	106
7	Ce-substituted LaNiO3 mixed oxides as catalyst precursors for glycerol steam reforming. Applied Catalysis B: Environmental, 2014, 147, 193-202.	10.8	91
8	Discussing the use of modified ceria as support for Pt catalysts on water–gas shift reaction. Applied Catalysis B: Environmental, 2010, 93, 250-258.	10.8	85
9	Ceria and cerium-based mixed oxides as ozonation catalysts. Chemical Engineering Journal, 2012, 200-202, 499-505.	6.6	74
10	Hydrogenation of citral over ruthenium-tin catalysts. Applied Catalysis A: General, 2003, 241, 155-165.	2.2	63
11	Steam reforming of ethanol for hydrogen production over MgOâ€"supported Ni-based catalysts. Applied Catalysis A: General, 2016, 518, 115-128.	2.2	63
12	Water-gas shift reaction over magnesia-modified Pt/CeO2 catalysts. Journal of Power Sources, 2007, 165, 854-860.	4.0	55
13	Glycerol steam reforming over layered double hydroxide-supported Pt catalysts. Chemical Engineering Journal, 2015, 272, 108-118.	6.6	55
14	Direct conversion of xylose to furfuryl alcohol on single organic–inorganic hybrid mesoporous silica-supported catalysts. Applied Catalysis B: Environmental, 2017, 207, 279-285.	10.8	51
15	Relationship between Acid–Base Properties and the Activity of ZrO ₂ â€Based Catalysts for the Cannizzaro Reaction of Pyruvaldehyde to Lactic Acid. ChemCatChem, 2017, 9, 2675-2683.	1.8	50
16	Methylene blue oxidation over iron oxide supported on activated carbon derived from peanut hulls. Catalysis Today, 2017, 289, 237-248.	2.2	49
17	Renewable hydrogen from glycerol reforming over nickel aluminate-based catalysts. Catalysis Today, 2017, 289, 96-104.	2.2	48
18	The Role of Brønsted and Waterâ€Tolerant Lewis Acid Sites in the Cascade Aqueousâ€Phase Reaction of Triose to Lactic Acid. ChemCatChem, 2019, 11, 3054-3063.	1.8	45

#	Article	IF	Citations
19	Hydrogenation of dimethyl adipate over bimetallic catalysts. Catalysis Communications, 2004, 5, 377-381.	1.6	42
20	Partial oxidation and water–gas shift reaction in an integrated system for hydrogen production from ethanol. Applied Catalysis A: General, 2008, 334, 179-186.	2.2	42
21	Tuning Surface Basic Properties of Nanocrystalline MgO by Controlling the Preparation Conditions. Langmuir, 2010, 26, 3382-3387.	1.6	40
22	Addition of La and Sn to alumina-supported Pd catalysts for methane combustion. Applied Catalysis A: General, 2004, 259, 57-63.	2.2	38
23	Vanadium-promoted Pt/CeO2 catalyst for water–gas shift reaction. Journal of Catalysis, 2008, 260, 93-102.	3.1	35
24	Synthesis and characterization of polymeric activated carbon-supported vanadium and magnesium catalysts for ethylbenzene dehydrogenation. Applied Catalysis A: General, 2008, 350, 79-85.	2.2	34
25	Conversion of hemicellulose-derived pentoses over noble metal supported on 1D multiwalled carbon nanotubes. Applied Catalysis B: Environmental, 2018, 232, 101-107.	10.8	34
26	Single-stage medium temperature water-gas shift reaction over Pt/ZrO2 – Support structural polymorphism and catalyst deactivation. Applied Catalysis B: Environmental, 2012, 117-118, 302-309.	10.8	33
27	Tandem dehydration–transfer hydrogenation reactions of xylose to furfuryl alcohol over zeolite catalysts. Green Chemistry, 2017, 19, 3759-3763.	4.6	33
28	One-step conversion of xylose to furfuryl alcohol on sulfated zirconia-supported Pt catalyst—Balance between acid and metal sites. Catalysis Today, 2017, 289, 273-279.	2.2	33
29	Promotional effect of palladium in Co-SiO2 core@shell nanocatalysts for selective liquid phase hydrogenation of chloronitroarenes. Journal of Catalysis, 2020, 385, 224-237.	3.1	29
30	Discussing Lewis and BrÃ,nsted acidity on continuous pyruvaldehyde Cannizzaro reaction to lactic acid over solid catalysts. Molecular Catalysis, 2018, 458, 198-205.	1.0	28
31	Role of catalyst preparation on determining selective sites for hydrogenation of dimethyl adipate over RuSn/Al2O3. Journal of Molecular Catalysis A, 2006, 253, 62-69.	4.8	27
32	Methane combustion over Pd supported on MCM-41. Applied Catalysis B: Environmental, 2007, 76, 115-122.	10.8	27
33	Lactic acid production from aqueous-phase selective oxidation of hydroxyacetone. Journal of Molecular Catalysis A, 2015, 400, 64-70.	4.8	27
34	Examination of the surface chemistry of activated carbon on enantioselective hydrogenation of methyl pyruvate over Pt/C catalysts. Journal of Molecular Catalysis A, 2002, 179, 243-251.	4.8	26
35	Performance of RuSn catalysts supported on different oxides in the selective hydrogenation of dimethyl adipate. Catalysis Today, 2005, 107-108, 250-257.	2.2	26
36	Lactic acid production from hydroxyacetone on dual metal/base heterogeneous catalytic systems. Green Chemistry, 2015, 17, 3889-3899.	4.6	26

3

#	Article	IF	CITATIONS
37	Valorisation of xylose to lactic acid on morphology-controlled ZnO catalysts. Catalysis Science and Technology, 2018, 8, 4945-4956.	2.1	24
38	Selective hydrogenation of dimethyl adipate on titania-supported RuSn catalysts. Applied Catalysis A: General, 2009, 353, 101-106.	2.2	23
39	Perovskite as nickel catalyst precursor – impact on catalyst stability on xylose aqueous-phase hydrogenation. RSC Advances, 2016, 6, 67817-67826.	1.7	22
40	Tailoring Sn-SBA-15 properties for catalytic isomerization of glucose. Applied Catalysis A: General, 2019, 581, 37-42.	2.2	22
41	Thermal spreading of WO3 onto zirconia support. Applied Surface Science, 2007, 253, 3160-3167.	3.1	21
42	Boria modified alumina probed by methanol dehydration and IR spectroscopy. Applied Surface Science, 2004, 227, 132-138.	3.1	20
43	Stable reduced Ni catalysts for xylose hydrogenation in aqueous medium. Catalysis Today, 2018, 310, 59-67.	2.2	17
44	Promoting effects of indium doped Cu/CeO ₂ catalysts on CO ₂ hydrogenation to methanol. Reaction Chemistry and Engineering, 2022, 7, 1589-1602.	1.9	14
45	Enhancing xylose aqueous-phase hydrogenation catalytic performance of A-site Ce substituted and B-site Rh doped reduced perovskites. Molecular Catalysis, 2017, 436, 182-189.	1.0	13
46	Aqueous-phase tandem catalytic conversion of xylose to furfuryl alcohol over [Al]-SBA-15 molecular sieves. Catalysis Science and Technology, 2019, 9, 5350-5358.	2.1	13
47	Performance of Pd supported on mesoporous molecular sieves on methane combustion. Catalysis Communications, 2012, 25, 1-6.	1.6	10
48	Aqueous-phase oxidation of 5-hydroxymethylfurfural over Pt/ZrO ₂ catalysts: exploiting the alkalinity of the reaction medium and catalyst basicity. Green Processing and Synthesis, 2016, 5, 353-364.	1.3	10
49	Discussing the performance of beta zeolites in aqueous-phase valorization of xylose. Catalysis Science and Technology, 2020, 10, 7165-7176.	2.1	10
50	Cobalt SiO2 core-shell catalysts for chemoselective hydrogenation of cinnamaldehyde. Catalysis Today, 2020, 356, 330-338.	2.2	9
51	Machine Learning and Data Science in Chemical Engineering. Industrial & Engineering Chemistry Research, 2022, 61, 8357-8358.	1.8	9
52	Characterization and activity of vanadia-promoted Pt/ZrO2 catalysts for the water–gas shift reaction. Catalysis Today, 2008, 138, 235-238.	2.2	8
53	One-pot aqueous-phase xylose upgrading on Zr-containing BEA zeolites. Applied Catalysis A: General, 2020, 604, 117766.	2.2	8
54	Catalytic Upgrading of Xylose to Furfuryl Alcohol over Zr-SBA-15. Industrial & Engineering Chemistry Research, 2021, 60, 18739-18749.	1.8	7

#	Article	IF	CITATIONS
55	Impregnating ionic Pt species on vanadium oxide nanotubes. Catalysis Today, 2009, 142, 207-210.	2.2	5
56	Surface molecular design of organic–inorganic mesoporous hybrid materials for CO2 capture. Journal of Environmental Chemical Engineering, 2021, 9, 104951.	3.3	5
57	Continuous Cellobiose Hydrolysis over Lamellar Aluminosilicatesâ€"Unveiling [Al]-magadiite Water-Tolerant Acid Sites. Industrial & Engineering Chemistry Research, 2021, 60, 4794-4805.	1.8	5
58	Aviation biofuel range cycloalkane from renewables: Liquid-phase catalytic conversion of menthol on niobia-supported catalysts. Fuel, 2020, 277, 118288.	3.4	4
59	Platinum–Vanadium Oxide Nanotube Hybrids. Nanoscale Research Letters, 2010, 5, 1002-1009.	3.1	3
60	Conversion of xylose to bioproducts on bifunctional supported platinum-group metals catalysts. Current Research in Green and Sustainable Chemistry, 2022, 5, 100305.	2.9	3
61	CATALYTIC COMBUSTION OF SOOT ON Ce-DOPED LANTHANUM COBALTITES. Journal of the Chilean Chemical Society, 2014, 59, 2725-2730.	0.5	2
62	Continuous aqueous-phase cascade conversion of trioses to lactic acid over Nb2O5 catalysts. Biomass Conversion and Biorefinery, 2023, 13, 11865-11878.	2.9	2
63	Further experimental evidences of thermal spreading of tungsten oxide on zirconia. Applied Surface Science, 2008, 254, 6366-6369.	3.1	1
64	Production of Platform Chemicals and High Value Products from Hemicellulose. Clean Energy Production Technologies, 2022, , 361-397.	0.3	1